2.03.01-84, 2.02.01-83 . 1 71

ПОСОБИЕ

ПО ПРОЕКТИРОВАНИЮ ФУНДАМЕНТОВ НА ЕСТЕСТВЕННОМ ОСНОВАНИИ ПОД КОЛОННЫ ЗДАНИЙ И СООРУЖЕНИЙ (к СНиП 2.03.01-84 и СНиП 2.02.01-83)

14 1984 .

1989

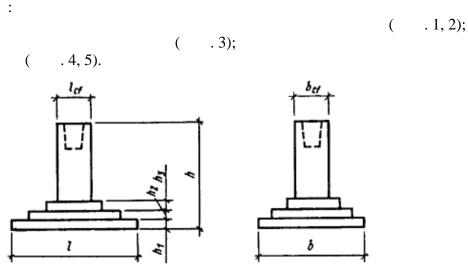
Изменение в «Пособии по проектированию фундаментов на естественном основании под колонны зданий и сооружений (к СНиП 2.03.01-84 и СНиП 2.02.01-83)»

«

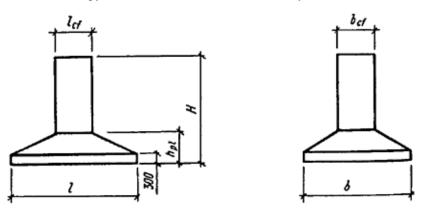
<i>"</i>	, , « «))
•	СОДЕРЖАНИЕ	
<u>1.</u> 2.		
		_
		_
3.		
<u>4.</u>		

5. PO 4. <u>h</u>0,pl B15 3 4 5 ПРЕДИСЛОВИЕ 2.03.01-84 « 2.02.01-83 « **»**. 1. ОБЩИЕ УКАЗАНИЯ 1.1. 2.03.01-84 2.02.01-83, 1.2. 2.02.01-2.02.01-83). <u>83</u> « 1.3. 2.02.01-83 **»**. 1.4.

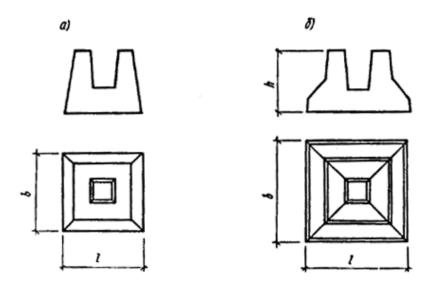
2.03.01-84,


2.02.01-83

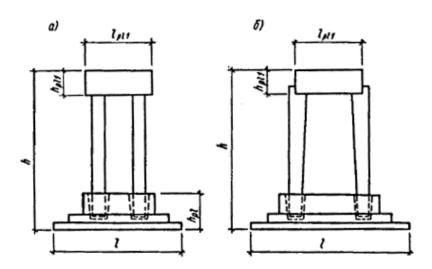
. 2 71


2.03.01-84, 2.02.01-83 . 3 71

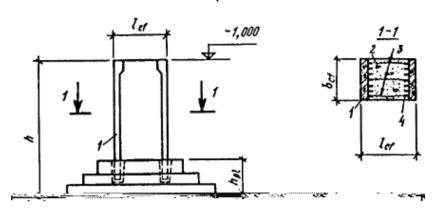
2.03.11-85.


1.5.

Черт. 1. Монолитные фундаменты стаканного типа со ступенчатой плитной частью



Черт. 2. Монолитные фундаменты с пирамидальной плитной частью



Черт. 3. Сборные железобетонные фундаменты

2.03.01-84, 2.02.01-83 . 4 71

Черт. 4. Сборно-монолитные фундаменты с подколонниками рамного типа

Черт. 5. Сборно-монолитные фундаменты с подколонником, состоящим из сборных плит и монолитного бетона

; 4 -

; 2 -

1 -

; 3 -

2. РАСЧЕТ ОТДЕЛЬНО СТОЯЩИХ ФУНДАМЕНТОВ ПОД ЖЕЛЕЗОБЕТОННЫЕ

колонны ОСНОВНЫЕ ПОЛОЖЕНИЯ

2.1. 2<u>.02</u>.01-83 « 2.03.01-84 « 2.01.07-85 **« »**. 2.2. $\gamma_f > 1$. 2.3. ()

2.03.01-84, 2.02.01-83 . 5 71

ОПРЕДЕЛЕНИЕ ВЫСОТЫ ПЛИТНОЙ ЧАСТИ ФУНДАМЕНТА И РАЗМЕРОВ СТУПЕНЕЙ РАСЧЕТОМ НА ПРОДАВЛИВАНИЕ

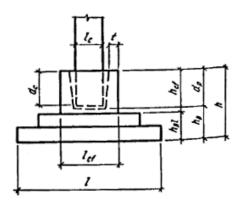
 $b/l \ge 0.5 \tag{}$

2.6.

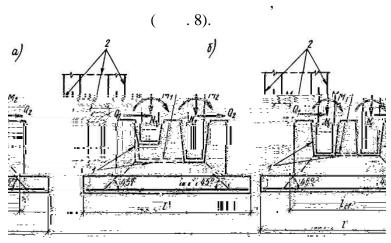
1- - $(\ . \ 6, \) \\ h_{cf} \geq 0,5 \ (l_{cf} - l_c) \ (\ . \ 6, \),$

, $h_{cf} - d_p \ge 0.5 \; (l_{cf} - l_c) \; (\qquad . \; 6, \; \;).$

N ;


 $h_{cf} - d_p < 0.5 \ (l_{cf} - l_c) \ (\qquad .7).$

 N_c (<u>. 2.20</u>).


Черт. 6. Виды сопряжений фундамента с колонной по 1-й схеме расчета на продавливание

; - $h_{cf} \ge 0.5$ $(l_{cf} - l_c); - h_{cf} \ge 0.5 (l_{cf} - l_c)$

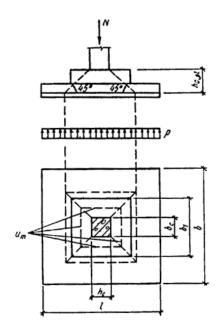
Черт. 7. Сопряжение сборной колонны с низким фундаментом при h_{cf} - d_p < 0,5 (l_{cf} - l_c)

2.7. ,

Черт. 8. Схемы продавливания фундамента при опирании на него двух колонн ; l -

Расчет на продавливание по схеме 1 (см. черт. 6)

2.8.

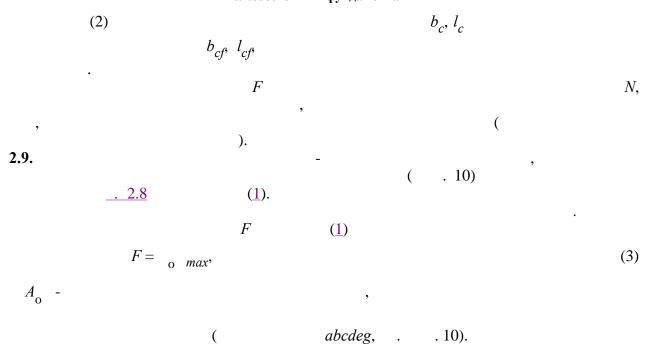

 u_m

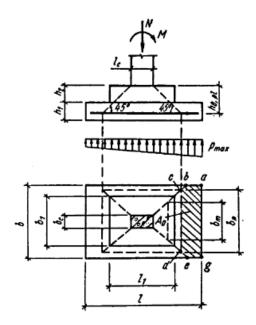
$$F \leq R_{bt} u_m h_{0,pl}, \tag{1}$$

$$F - \qquad ;$$

$$R_{bt} - \qquad ,$$

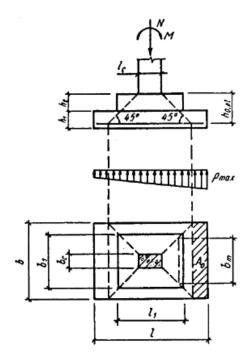
$$\gamma_{b2} \qquad \gamma_{b3} \qquad .15 \underline{\qquad 2.03.01-84}$$


 γ_{b2} γ_{b3} . 15 <u>2.03.01-84</u>


,
$$u_{m} = 2 (b_{c} + l_{c} + 2 h_{0,pl})$$
 (2)
$$u_{m} F ,$$

, (45° (. 9).

Черт. 9. Схема образования пирамиды продавливания в центрально-нагруженных квадратных железобетонных фундаментах



Черт. 10. Схема образования пирамиды продавливания в центрально-нагруженных прямоугольных, а также внецентренно нагруженных квадратных к прямоугольных фундаментах

$$= 0.5b (l - l_c - 2h_{0,pl}) - 0.25 (b - b_c - 2h_{0,pl})^2,$$

$$b - b_c - 2h_{0,pl} \le 0$$

$$(4)$$

Черт. 11. Схема образования пирамиды продавливания во внецентренно нагруженных прямоугольных фундаментах при 0,5 (b - b_c) < $h_{g,pl}$

max $p_{\text{max}} = \frac{N}{A} + \frac{M}{W}, \tag{5}$

2.03.01-84, 2.02.01-83 . 9 71

,

$$p_{\text{max}} = p = \frac{N}{A} \tag{6}$$

 u_m (1)

 b_{m}

$$b - b_c > 2h_{0,pl}$$
 (. . . 10) $b_m = b_c + h_{0,pl}$; (7)

$$b - b_c \le ($$
 . . . 11) $b_m = 0.5 (b + b_c),$ (8)

 b_c - ,

2.10.

 $\boldsymbol{h}_{0,pl} \qquad \quad \boldsymbol{\cdot} \qquad \quad \boldsymbol{,} \qquad \qquad \boldsymbol{.} \qquad \boldsymbol$

2.12. $h_{0,pl}$

 $0.5 (b - b_c) > h_{0,pl} (. . . . 10)$

$$h_{0,pl} = -0.5 b_c + \sqrt{0.25b_c^2 + \left(bc_l - c_b^2\right)/(1+r)},$$
(9)

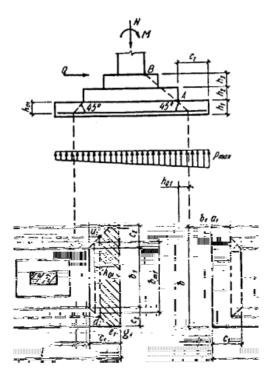
 $r = R_{bt} / p_{max};$

$$c_l = 0.5 (l - l_c), c_b = 0.5 (b - b_c);$$

 $0.5 (b - b_c) \le h_{0,pl}$ (. ______11)

$$h_{0,pl} = \frac{bc_l}{[b+0.5r(b+b_c)]}.$$
 (10)

2.13.


, $h_{0,pl}$ h

. . 4 (. <u>. 4.7</u>).

2.14.

 $\begin{array}{ccc} \underline{}. & 2.9. & & & c_1 \ (& . & 12) & & \\ & & b_1 & & & \end{array},$

 $F \le R_{bt} \, h_{01} \, b_{m1}. \tag{11}$

Черт. 12. Схема образования пирамиды продавливания в нижней ступени прямоугольных железобетонных фундаментов

 $b_{m1} \hspace{1cm} F \hspace{1cm} :$

$$F = A_{01} p_{max}; (12)$$

$$b - b_1 > 2h_{01} b_{m1} = b_I + h_{01}; (13)$$

$$b - b_1 \le 2h_{01} b_{m1} = 0.5 (b + b_1),$$
 (14)

 $a_1b_1u_1d_1e_1g_1$,

$$\theta_1 = 0.5b (l - l_1 - 2h_{01}) - 0.25 (b - b_1 - 2h_{01})^2;$$
 (15)

 $b - b_1 - 2h_{01} \le 0 \tag{15}$

$$_{1} = _{2} = 0.5b + (1+r)h_{01} - \sqrt{0.25b^{2} + r(1+r)h_{01}^{2}}.$$
 (16)

$$, \qquad (\qquad , _{1} = _{2}),$$

 $\frac{2}{15} (R_{bt} = 0.75) \qquad \gamma_{b2} = 1).$

 γ_{b2} max

 $\gamma_{b2}\,R_{bt}/0.75, \qquad \qquad R_{bt}\,- \qquad \quad .$

2.17. (. 2.14, 2.15).

$$l_2 = (l - 2c_1 - l_c)h_3 / (h_2 + h_3) + l_c; (17)$$

$$b_2 = (b - 2c_2 - b_c)h_3 / (h_2 + h_3) + b_c.$$
(18)

. 4 . <u>4.4</u>, <u>4.7</u>.

2.18.

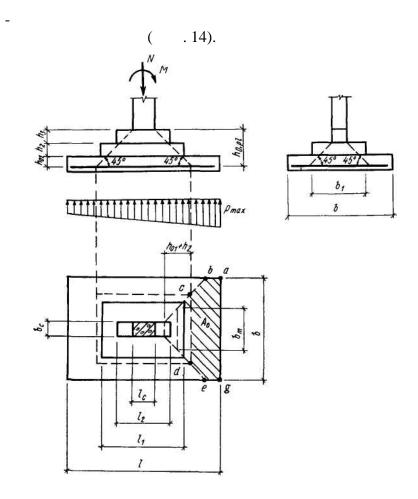
)

 $l_1 \ge l_c + 2h_2,$ $b_1 < b_c + 2h_2$ (. 13).

Черт. 13. Схема образования пирамиды продавливания в прямоугольных железобетонных фундаментах с верхней ступенью размерами, при которых одна из сторон ступени $l_1 > l_c + 2h_2$, а другая $b_1 < b_c + 2h_2$

$$F \le R_{bt} (h_{01} b_{m1} + h_2 b_{m2}). \tag{19}$$

 b_{m1} b_{m2}


$$b_{m1} = b_1 + h_{01}; (20)$$

$$b_{m2} = 0.5 (b_1 + b_c); (21)$$

A abcdeg,

$$A_{o} = 0.5b (l - l_{c} - 2h_{0,pl}) - 0.25 (b - b_{1} - 2h_{01})^{2},$$
(22)

 h_{01} - $0.5(b - b_1)$ 2.03.01-84, 2.02.01-83 . 12 71

Черт. 14. Схема образования пирамиды продавливания в прямоугольных железобетонных фундаментах, имеющих в двух направлениях разное число ступеней

$$F \leq R_{bt} \left[(h_{01} + h_2) \ b_m + h_3 \ b_c \right]. \tag{23}$$

$$F \tag{3}.$$

$$b_m = b_c + h_{01} + h_2; (24)$$

 $A_{_{
m O}}$ - abcdeg,

)

$$A_{0} = 0.5b (l - l_{c} - 2h_{0,pl}) - 0.25 [b - b_{c} - 2(h_{01} + h_{2})]^{2}.$$

$$0.5 (b - b_{c}) \le h_{01} + h_{2},$$

$$(25)$$

Расчет на продавливание по схеме 2

2.03.01-84, 2.02.01-83 . 13 71

$$N_c = \alpha N, \tag{26}$$

 α - ,

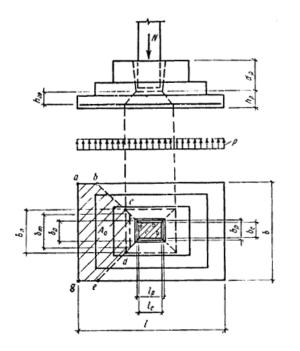
$$\alpha = (1 - 0.4R_{bt}A_c/N), \qquad 0.85, \qquad (27)$$

 R_{bt} -

 $A_c = 2(b_c + l_c) d_c^{-} ,$

2.21.

$$N_c \le bl \, R_{bt} \, b_m \, (h_{0,p} - d_p) \, / \, A_o,$$
 (28)


 A_0 - abcdeg (. ____ 15),

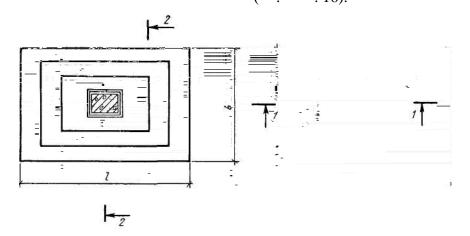
$$A_{o} = 0.5b (l - l_{p} - 2h_{0,p}) - 0.25 (b - b_{p} - 2h_{0,p})^{2};$$
(29)

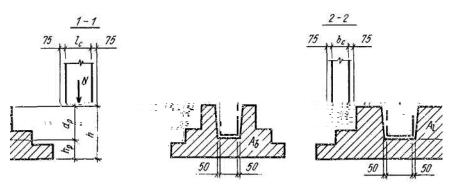
$$b_m = b_p + h_{o,p}. (30)$$

(29) (30):

 $h_{0,p}$

Черт. 15. Схема образования пирамиды продавливания в стаканном фундаменте от действия только продольной силы


2.22.


 N_c (. 16)

2.03.01-84, 2.02.01-83 . 14 71

$$b_c / l_c \le A_b / A_l N_c \le (l + b_c / l_c) \mu \gamma_g A_l R_{bt};$$
 (31)

$$b_c / l_c > A_b / A_l N_c \le (1 + l_c / b_c) \mu \gamma_g A_b R_{bt};$$
 (32)

Черт. 16. Площади вертикальных сечений $A_{_l}$ и $A_{_b}$ при раскалывании стаканного фундамента от действия только продольной силы

$$1 (. . . 9, 10)$$
 (1).

0,75.

РАСЧЕТ ПЛИТНОЙ ЧАСТИ ФУНДАМЕНТА НА ПОПЕРЕЧНУЮ СИЛУ

2.24.
$$b/l \leq 0.5$$

$$($$
 $)$ $_{i}$ $<$ 2,4/ $h_{0,i}$

 $Q_i \le 2.5 R_{bt} b_i h_{0,i};$ (33) $_{i} > 2,4h_{0,I} Q_{i} \le 6 R_{bt} b_{i} h_{0,i}^{2}/c_{i};$ (34)_i -_. 2.8; R_{bt} $h_{0,i}$ - Q_i 2.25.) 0,6 $(10 / ^2),$ (33). РАСЧЕТ ПЛИТНОЙ ЧАСТИ ФУНДАМЕНТА НА ОБРАТНЫЙ МОМЕНТ 2.26. 2.27. $_{0,i} \le R_{bt} W_{pl,i},$ (35)i-0,i); $W_{pl,i}$ i- $W_{pl,i}$ $W_{pl,i} = b h_1^2 / 3,5;$ (36) $W_{pl,i} = 2I_{b,0} / (h - x) + S_{b,0},$ (37) $I_{b,0}$ - $S_{b,0}$ -: $S_{b,0} = 0.5(h-x)A_{bt}$, A_{bt} -

. 15

71

2.03.01-84,

2.02.01-83

2.03.01-84, 2.02.01-83 . 16 71

2.28. 0,*i*

$$_{0,i} = 0.5 (\gamma_{cg} d + q) c_i^2 b - M_{pi},$$
(38)

 $\gamma_{cg}^{}$ -

q

 $20 / ^{3}(2,0 / ^{3});$ d- ;

2.29. *pi*

,

. pi

 $i (e_{0,x} < l/6)$

_x (. 17,)

$$M_{pi,x} = [N + (\gamma_{cg}d + q) lb] \times c_i^2 (1 - 6e_{0,x}/l + 4e_{0,x} c_i/l^2)/2l,$$
(39)

$$e_{0,x} = (M + Qh) / [N + (\gamma_{cg}d + q) lb];$$
 (40)

l/4 > 0, > l/6, l/4 > 0, > l/6, l/2

(. 17,)

$$M_{pi,x} = [N + (\gamma_{cg}d + q) \ lb] \times (c_i - 3e_{0,x} + l/2)^3 / 27 (l/2 - e_{0,x})^2.$$
 (41)

Черт. 17. Расчетные схемы и сечения при проверке прочности на обратный момент внецентренно нагруженного фундамента

-
$$_0 \le l/6$$
; - $l/4 > e_0 > l/6$

 $e_{0,x}, l$ $e_{0,y}, b;$ $l/4 > e_0 > l/6, c_i < 3e_0 - l/2$ pi,y

($_{sl}$ A_{sb} -

pi = 0.

2.30. <u>(35</u>)

<u>(43)</u> ()

ОПРЕДЕЛЕНИЕ СЕЧЕНИЙ АРМАТУРЫ ПЛИТНОЙ ЧАСТИ ФУНДАМЕНТА

2.31.

l b)

 $_{sl}$ ($_{sb})$

(42)

i;

2.03.01-84, 2.02.01-83 . 18 71

$$h_{0,i} - \qquad .$$

$$. 20 «$$

$$\alpha_0 \qquad v,$$

$$A_{sl(sb)} = -\frac{1}{i} / R_s v h_{0,i}, \qquad (43)$$

 R_s -

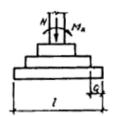
2.32.

$$i - i$$

$$\vdots$$

$$[e_{0,x} = (M_x + Q_x h) / N \le l/6]$$

$$M_x (.18, a,)$$

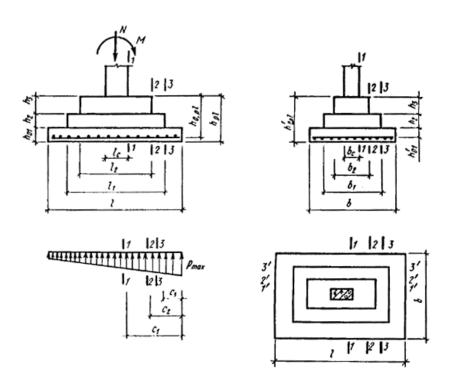

$$- \frac{1}{16} Nc_i^2 (1 + 6e_{0,x} / 1 - 4e_{0,x} c_i / l^2) / 2l;$$

$$(44)$$

 $| Nc_i^2 (1 + 6e_{0,x}/1 - 4e_{0,x} c_i/l^2)/2l;$ $(l/4 > e_{0,x} > l/6)$ $M_x (.18,)$

$$-\sum_{i} = 2Nc_{i}^{2} [1 - 2c_{i}/9 (l - 2e_{0,x})]/3 (l - 2e_{0,x}).$$

$$-\sum_{yi} e_{0,x} l \qquad e_{0,y} b.$$
(45)



Черт. 18. Расчетные схемы для определения арматуры внецентренно нагруженного фундамента - ; - ; - l/4 > 0 > l/6

2.33.

, . 19 (46)-(<u>57</u>).

Черт. 19. Расчетные схемы и сечения при определении арматуры внецентренно нагруженного фундамента при действии изгибающего момента в одном направлении

$$\alpha_0 = -\frac{1}{1-1} R_b b_2 h_{0,pl}^2, \tag{46}$$

$$\frac{1}{1-1} = Nc_{I-I}^{2} (1 + 6e_{0}/1 - 4e_{0}c_{1-1}/1^{2})/2l;$$

$$\alpha_{0}$$

$$v;$$

$$A_{sl} = \frac{-}{}_{1-1} / R_s \, v \, h_{0,pl}, \tag{47}$$

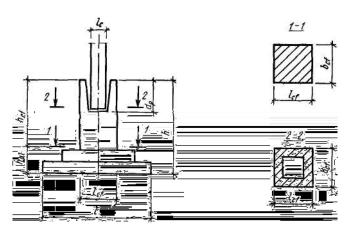
$$\alpha_0 = \frac{-}{2-2} / R_b b_1 (h_{01} + h_2)^2, \tag{48}$$

$$-_{2-2} = N c_{2-2}^{2} (1 + 6e_{0} / l - 4e_{0} c_{2-2} / l^{2}) / 2l;$$

$$A_{sl} = \frac{}{} / R_s \nu (h_{01} + h_2); \tag{49}$$

3-3 (. . . 19):

$$\alpha_0 = \frac{-}{_{3-3}} / R_b b h_{01}^2, \tag{50}$$


$$- \sum_{3-3} = N c_{3-3}^{2} (1 + 6e_0 / l - 4e_0 c_{3-3}) / l^2) 21;$$

$$A_{sl} = -\frac{1}{3-3} / R_s v h_{01}. {(51)}$$

•

$$\alpha_0 = \frac{-}{|l-l|} / R_b l_2 (h'_{0,pl})^2, \tag{52}$$

```
. 20
                            2.03.01-84,
                                                            2.02.01-83
                                                                                                                                                     71
      -
1'-1' = N c^2
1'-1' / 2b;
                                                  \alpha_0
                                                                                                    ν,
                              A_{sb} = \frac{-}{_{1'-1'}} / R_s v h'_{0,pl},
                                                                                                                                                   (53)
                                                                2'-2'( . <u>. . 19</u>):
                             \alpha_0 = \frac{2'-2'(}{\alpha_0} \left( \frac{2'-2'}{R_b l_1 (h_{01}' + h_2)^2} \right)^2,
                                                                                                                                                   (54)
       -
_{2'-2'} = N^2 c_{2'-2'} / 2b;
                             A_{sb} = \frac{-}{2^{\prime}-2^{\prime}} / R_s v(h_{01}' + h_2);
                                                                                                                                                   (55)
                3′-3′( . ____.<u>19</u>):
                              \alpha_0 = \frac{-}{3'-3'} / R_h 1 h_{01}^{\prime 2},
                                                                                                                                                   (56)
      -_{3'-3'} = N^2 \quad _{3'-3'} / 2b;
                              A_{sh} = \frac{-}{_{3'-3'}} / R_s v h_{01}'.
                                                                                                                                                   (57)
-<sub>1-1</sub>, -<sub>2-2</sub>, -<sup>(46)-(57)</sup>: -<sub>3-3</sub> -
                                               1'-1', 2'-2', 3'-3'.
                                                               (47), (49), (51)
                                                                                                                              (53), (55), (57) -
                                                                                           h_{0,pl}
                                                                                                                                            Q_{max_i} \leq
1,6 \; R_{bl} \; b_i \; h_{0,i}, \qquad Q_{max,i}, \; b_i, \; h_{0,i} \; -
                                                                                                                  l_{an}
                                                                     50 %
                          РАСЧЕТ ПОПЕРЕЧНЫХ СЕЧЕНИЙ ПОДКОЛОННИКА
    2.34.
                                                                                    ( 1-1, _____. 20);
                                                                                                                                                   2-2,
    . ____. 20).
```


Черт. 20. Расчетные сечения бетонных и железобетонных подколонников

```
2.35.
                                                  1-1
                        ):
                                                   Ν,
                                                                                            у<sup>•</sup>
N-N<sub>c</sub>
                                        2-2
                                                                     ).
                                     N
                                                                                      <u>. 2.20</u>.
                                                                                  1-1
2.36.
2.37.
     0,1
                                                                                                          1-1
2.38.
                                                      . 1.21 ______2.03.01-84.
                                                                                           h_{cf} / b_{cf} \le 6,
\eta
2.39.
                  h_{cf} / b_{cf} \le 4
 1. 3.6 	 3.24 	 2.03.01-84. l = h_{cf}( ), l = 1,2 h_{cf}(
      1.
                                                                         \eta
                                                                                               ).
2.40.
                                                                  . 3.5 ______2.03.01-84.
```

1,3 4 , b

 $N \leq R_{b-b}.$ 2 - y y > . . > e

2.03.01-84, 2.02.01-83 . 22 71

. 15

 $2.03.01-84 \ (\qquad \qquad \gamma_{b9} = 0.9;$

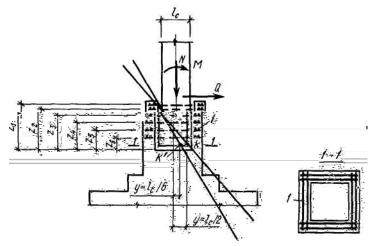
1,5 $\gamma_{b3} = 0.85$).

2.41. 1-1 (. __. 20) (36)-(39) _____ 2.03.01-84.

_. <u>4.21</u>.

k, k

k', k'


k'(.21) :

$$\geq l_c / 2 M_{kx} = 0.8 (M_x + Q_x d_p - 0.5 N l_c);$$
 (58)

$$l_c/2 > e_x > l_c/6 M_{kx'} = 0.3 M_x + Q_x d_p.$$
 (59)

 k_y , k_y , k_y , k_z

 $M_y, Q_y, b_c.$

Черт. 21. Расчетная схема стаканной части подколонника $\it l$ -

2.43. $(\gamma_{b2} = 1, 1 \qquad \gamma_{b2} = 0, 9)$

2.44.

(. . 15 <u>2.03.01-84</u>).

,

l-1 (. . . 21)

(58) (59).

```
. 23
                      2.03.01-84,
                                                   2.02.01-83
                                                                                                                                   71
                         \sum_{i=1}^{n} R_{si} A_{si} z_{i} = M_{k}; \quad \sum_{i=1}^{n} R_{si} A_{si} z_{i} = M'_{k}
                                                                                                                                 (60)
                                                                                                           i-
   si -
z_i -
2.45.
                               \geq l_c / 2 A_{sx} = M_{kx} / R_s \sum_{i}^{s} z_i;
                                                                                                                                 (61)
                             l_c/2 > c > l_c/6 A_{sx} = M'_{kx}/R_s \sum_{1}^{n} z_i.
                                                                                                                                 (62)
                                                                                                   ky', ky'.

( \le l_c / 6, e \le b_c / 6)
                                                       sy
2.46.
                      РАСЧЕТ ПОДКОЛОННИКА НА МЕСТНОЕ СЖАТИЕ
2.47.
                                                                               ) (
. 3.39, 3.41 <u>2.03.01-84</u>.
                             )
2.48.
             )
                      N_c \leq \psi_{loc} R_{b,loc} A_{loc l}
                                                                                                                                 (63)
 N_c -
                                             e_0 \le l_c / 6 (b_c / 6) - 1.0, \qquad e_0 > l_c / 6 (b_c / 6) - 0.75;
\psi_{loc} -
R_{b,loc} -
                      R_{b,loc} = \varphi_{loc} R_b,
                                                                                                                                 (64)
                              \varphi_{loc} = \sqrt[3]{\log_2/A_{loc1}},
                                                                             2,5,
                                                                                                                                 (65)
     R_b -
                                                                                                                \gamma_{b3}, \gamma_{b9}
         15
                       2.03.01-84;
    loc2
    loc1
                                                   (63)
2.49.
                                                                                                                              . 2.50.
2.50.
                      N_c \le R_{b,red} A_{loc1}
                                                                                                                                 (66)
 N_c, A_{loc1} - . . 2.48;
R_{b,red} -
```

(

2.03.01-84, 2.02.01-83 . 24 71

$$R_{b,red} = R_b \varphi_{loc,b} + \varphi \mu_{xy} R_{s,xy} \varphi_{loc,s}, \tag{67}$$

$$\varphi_{loc,b} = \sqrt[3]{_{loc_2}/A_{loc_1}}, \qquad 3.55$$

 $R_{s,xy}$ -

$$\varphi_{loc.s} = 4.5 - 3.5 \quad loc_1 / A_l;$$
 (68)

$$\mu_{xy} = (n_x A_{sx} l_x + n_y A_{sy} l_y) / A_{lf} S, \tag{69}$$

lf ;

 n_x , A_{sx} , l_x -

 $\begin{array}{c} (\\ n_y, A_{sy}, l_y -\\ S - \end{array} \hspace{1cm} ; \\$

$$\varphi = 1 / (0.23 + \psi), \tag{70}$$

$$\psi = \mu_{xv} R_{s,xv} / (R_b + 10); \tag{71}$$

 $R_{\scriptscriptstyle S,x}$, R_b –

2.51. 2 (. <u>. 4.28</u>). (<u>63</u>).

loc1 (63)

$$loc1 = (b_p + 2z) (l_p + 2z), (72)$$

z - (63)

`

РАСЧЕТ ФУНДАМЕНТОВ ПО ОБРАЗОВАНИЮ И РАСКРЫТИЮ ТРЕЩИН

2.52.

1-1

0,008, σ $2R_{bt,ser}$,

·

$$\sigma = N / A_{red} - (M + Qh_{cf}) / 1,75 W_{red}.$$
(73)

2.53.

, .

2.54.

 $\gamma_f = 1,$,

2.55. a_{cr} , a_{cr} , a_{cr} , a_{cr}

, 4.14-4.16 _____

```
2.03.01-84
                                                     . 2.56-2.60
  2.56.
                                                                   μ,
            A_{sb}
                                                                                                                                       h_0,
sl
                          A-II A-III
                                                       0,02;
                                                                                                                                       A-II
                22
  2.57.
         M_{r_1} / M_{r_2} \ge \frac{2}{3},
         M_{r1} / M_{r2} < \frac{2}{3},
     M_{r2} -
  2.58.
                                                        crc'
                            a_{crc} = \varphi_l \; \eta \; \sigma_{_S} \, 20 \; (3.5 \; \text{--} \; 100 \mu) \; \sqrt[3]{\text{d}} \; / E_{_S} \, ,
                                                                                                                                             (74)
     \varphi_l -
                                                                                                                          - 1,
                              \varphi_l = 1.6 - 15 \ \mu;
                                                                                                                                             (75)
                                                                                                          , - 1,2;
  \eta -
                                           - 1,3;
  μ -
                                                                               (
                                                                                                                h_0
                                                  0,02;
                           ),
  d -
                        d = (n_1 d_1^2 + n_2 d_2^2 + n_3 d_3^2) / (n_1 d_1 + n_2 d_2 + n_3 d_3).
                                                                                                                                             (76)
                                                                  \mu \le 0.008 M_{r2} < 0
                                                    crc = 0
                          M_{crc} = R_{bt.ser} W_{pl};
                                                                                                                                             (77)
                                                                   (74),
                 a_{crc},
                           _0 = M_{crc} + \psi b h^2 R_{bt,ser}
                                                                                                                                             (78)
                              \psi = 15 \mu \alpha/ \eta ,
                                                                         0,6;
                                                                                                                                             (79)
```

. 25

71

2.03.01-84,

2.02.01-83

. 26 71

b, h -(79) μ , η -(74). a_{crc} $\varphi_{l1}\,M_{r1}\,/\,M_{r2},$ (80) $\varphi_{l1}=1.8~\varphi_l\,M_{crc}\,/\,M_{r2}\,,$ φ_l . W_{pl}) ($W_{pl} = (0.292 + 1.5 \, A_s \, \alpha \, / \, bh + 0.15 \, A'_s \, \alpha \, / \, bh) \, bh^2;$ (81) $W_{pl} = 2 (I_{b,0} + \alpha I_{s,0}) / (h - x) + S_{bt},$ (82) $I_{b,0}$, $I_{s,0}$ -2.59. $\sigma_{s} = R_{s} M / M_{pr},$ (83)pr - $M_{pr} = M_{cal} A_{sf} / A_{st},$ M_{cal} - $\gamma_f >$ A_{sf} st -2.60. $\varphi_1 = 1$ (84) $a_{crc} = a_{crc1} - a_{crc2} + a_{crc3},$ a_{crc1} a_{crc2} -); a_{crc3} -2.61. 0,4 0,3 crc0,3

crc

```
. 27 71
               2.03.01-84,
                                 2.02.01-83
           0,2 .
  2.62.
                    2.03.11-85.
3. РАСЧЕТ ОТДЕЛЬНО СТОЯЩИХ ФУНДАМЕНТОВ ПОД СТАЛЬНЫЕ КОЛОННЫ
                            ОСНОВНЫЕ ПОЛОЖЕНИЯ
  3.1.
( . <u>. . 2</u>).
<u>3.14</u>).
   . 1 _ . 3.13)
           ФУНДАМЕНТНЫЕ БОЛТЫ, КОНСТРУКТИВНЫЕ УКАЗАНИЯ
  3.3.
                                      2.09.03-85.
                                                                   24379.0-80
<u>24379.1-80</u>.
  3.4.
                       . 1).
                                                                                    1
                                12-48
                                               12-90
                                                              12-48
                                                                            12-48
               ) d,
                                                               10d
                                                                             10d
                                 25d
                                               15d
                                                                             10d
                                 6d
                                                8d
                                                               5d
                                                               5d
                                 4d
  3.5.
                                                                                 ),
                                                                 (
          ).
  3.6.
  3.7.
```

2.03.01-84, 2.02.01-83 . 28 71

2

,	40	40 50	51 65
	3 2 380-	09 2 -6 10 2 1-6	09 2 -8 10 2 1-8
	71	<u>19281-</u> 73	<u>19281-</u> 73

,

3.9. 56 40 09 2 -2 10 2 1-2 (_____

<u>19281-</u>73). **3.10.** 65 °

3.10. 65 ° 09 2 -8 10 2 1-8

30 / ² (3 • / ²) 60 . 3.11. (
65°) 3 2 380-71.

65°)
3.12.
3 2 380-71.
12,5

 $' \ge m_1 m_2, \tag{85}$

*m*₁ - 12,5

 $m_2^{}$ -

3 2.

3.13.

15 d, -10 d,

, - 5 d.

l . . 1.
2d . 5 d.

, :

100 150 " " " 30 .

200 " " " . 48 " " 3.14.

,

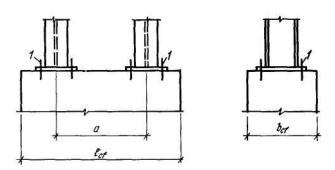
50-

70 ,

100-150

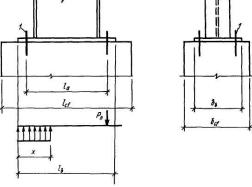
3.15.

РАСЧЕТ АНКЕРНЫХ БОЛТОВ


3.16. R_{ba} . 60 **3.17.** . 2 <u>II-23-81</u>. . 3.

3

182-75. 3.18. sa


(86)

R_{ba} - **3.19.**

Черт. 22. Схема сквозной стальной колонны

3.20. (. 23) , (. 3.20, (. 38), (39) <u>2.03.01-84</u> .

Черт. 23. Расчетная схема для определения усилий в анкерных болтах стальной колонны сплошного тина I -

$$P = (R_b b_b x - N) / n, (88)$$

$$R_b$$
 -
$$\gamma_{b2},\,\gamma_{b3},$$

$$\gamma_{b9};$$

$$b_b$$
 -
$$\gamma_{b2},\,\gamma_{b3},$$

$$\gamma_{b3},\,\gamma_{b3}$$

-

$$= 0.5 (l_a + l_b) - \sqrt{0.25(l_a + l_b)^2 - N(2_0 + l_a)/R_b b_b},$$

$$(89)$$

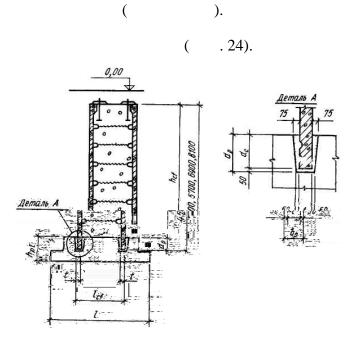
$$l_a - (23);$$

$$l_b, b_b - ;$$

$$0 = \frac{M}{N} - .$$

$$/l_a \le \xi_{R'} \tag{90}$$

$$\xi_R = (0.85 - 0.008R_b) / \{1 + R_{ba} [1 - (0.85 - 0.008R_b) / 1.1] / 400\}.$$
 (91)


```
\gamma_{b2} < 1
                                                                                     (91)
                                                                                                      400
             500
                                                                                             V,
3.21.
                                 V = 0.75 .
3.22.
                    M = V \xi,
                                                                                                     (92)
V -
                                             . 3.21;
ξ-
3.23.
                 Q,
                    Q \le f(0.5 N + M/h),
                                                                                                      (93)
f-
                                      0,25.
                   Q \le f(0.25 \ n \ A_{sa} \ R_{ba} + N),
                                                                                                      (94)
                                                                                          (
 n -
N -
                   (<u>91</u>)
                             (<u>92</u>)
        СБОРНО-МОНОЛИТНЫЕ ФУНДАМЕНТЫ СТАЛЬНЫХ КОЛОНН
3.24.
                . <u>4</u>, <u>5</u> ( . <u>. 1.4</u>).
3.25.
                                                                     3.
3.26.
                                                                               <u>. 5</u>),
3.27.
```

2.03.01-84,

2.02.01-83

. 31 71

3.28.

Черт. 24. Сопряжение сборных элементов с монолитной частью сборно-монолитного фундамента 3.29.

$$N \le b R_{bm} (x + \Delta R_b t / R_{bm}), \tag{95}$$

t -

$$\Delta R_b = R_b - R_{bm},$$

 R_b , R_{bm} -

$$x = x_e + \sqrt{x_e^2 + \Delta R_b t (2x_e - t) / R_{bm}}, \qquad (96)$$

$$\begin{aligned} x_e &= 0.5 \ l_{cf} - e \ge 0.05 \ l_{cf} \,. \\ x_e &< 0.5 \ t, \end{aligned} = 2 \ . \end{aligned}$$

S

$$N + R_s A_s = R_{bm} b_{cf} x + \Delta R_b b_{cf} l_{cf},$$
 (97)

$$A_{s} = (R_{bm} b_{cf} x + \Delta R_{b} b_{cf} l_{cf} - N) / R_{s}.$$
(98)

```
x = l_{0,cf} - \sqrt{l_{0,cf}^2 - 2[Ne_a - \Delta R_b bt(l_{cf} - t)]/R_{bm}b_{cf}},
                                                                                                                                 (99)
         l_{0,cf} = l_{cf} - 0.5t; e_a = e + 0.5 (l_{cf} - t).
       x < t,
                         x = l_{0,cf} - \sqrt{l_{0,cf}^2 - 2Ne_a / R_b b_{cf}} .
                                                                                                                                (100)
   3.30.
   3.31.
                        A_{SW} \ge \gamma_c \ b \ S \ R_{bt} / R_{SW},
                                                                                                                                (101)
     A_w -
                                                                                                 (
                                                                                                                                  )
                                                                                                0,35
   \gamma_c -
                                                          0,3 -
                                                                                      , \gamma_{c} = 0.6,
        \gamma_c = 0.45;
   S-
                                                                                                            8t;
   R_{bt} -
   R_{sw} -
                                                                                                                                  147
                                                                                             (1800 / ^2)
                                                                              176
                 (1500)
                                                                        -I
                     -II.
0,15, . .
                          \mu = A_{SW} \cdot 100 / bS = 0.15 \%.
                                                                                                                                (102)
                                                                                                                                   (
   3.32.
                                                              ( . _ . 4.10),
                        N_p = 2d_p (b_p + l_p) R_{an}';
                                                                                                                                (103)
                        N_p = 2d_c (t + b_{cf}) R_{an}'' + T.
                                                                                                                                (104)
                     (103) (104):
   d_p, b_p, l_p-
                         R_{an}' = 0.18 R_{bt};
                                                                                                                                (105)
                         R_{an}^{\prime\prime}=0.2\ R_{bt},
                                                                                                                                (106)
```

2.03.01-84,

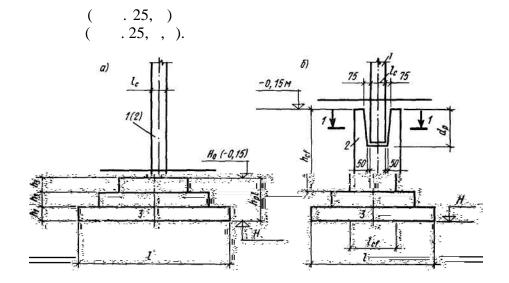
2.02.01-83

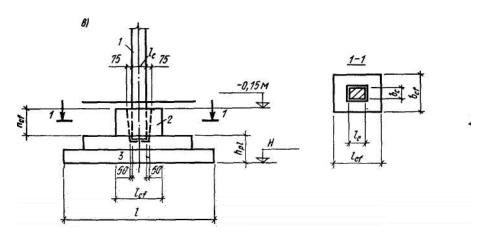
. 33

71

```
R_{bt} -
                  T = \delta R_{bm} l n;
                                                                                         (107)
                   T = 2h R_{bt} l n,
                                                                                         (108)
   \delta, l, h -
  R_{bm} -
  n -
  4. КОНСТРУКТИВНЫЕ УКАЗАНИЯ ПО ПРОЕКТИРОВАНИЮ ФУНДАМЕНТОВ
                                       МАТЕРИАЛЫ
  4.1.
                        12,5 15
                            20.
                                                                                   12,5.
                                                             10.
  4.2.
                                  -III
                                                <u>5781-82</u>.
                                                              . .),
                             -III
                                                                    5781-82
                                                    A-II
                                                                                  -I
<u>6727-80</u>.
                   ГЕОМЕТРИЧЕСКИЕ РАЗМЕРЫ ФУНДАМЕНТОВ
  4.3.
                                                                300
  4.4.
                                                                        (3
      23478-79)
                                                                                   100
                      2<u>3477-79</u>.
  4.5.
                                                                            0,6.
  4.6.
                            h
                        0,15
  4.7.
                                   . 4.
```

2.02.01-83


. 34


71

2.03.01-84,

0,3 h_{pl} h h_{pl} h_{I} h_2 h_3 $b \times l$ $b \times l$ $b_{cf} \times l_c$ $b_{cf} \times l_{cf}$ 0,3 1,5 0,3 $1,5 \times 1,5$ $1,5 \times 1,8$ $0,6 \times 0,6$ $0,6 \times 1,8$ 0,3 1,8 0,6 0,3 $1,8 \times 1,8$ $1,8 \times 2,1$ $0,6 \times 0,9$ $0,9 \times 2,1$ 2,1 0,9 0,3 0,3 0,3 $2,1\times 2,1$ $1,8 \times 2,4$ $0,9 \times 0,9$ $1,2 \times 2,1$ 2,4 1,2 0,3 0,3 0,6 $2,4 \times 2,4$ $2,1\times2,7$ $0,9 \times 1,2$ $1,5 \times 2,1$ 2,7 1,5 0,3 0,6 0,6 $2,7 \times 2,7$ $2,4 \times 3,0$ $0,9 \times 1,5$ $1,8 \times 2,1$ 3,0 1,8 0,6 0,6 0,6 $3,0 \times 3,0$ $2,7 \times 3,3$ $1,2 \times 1,2$ $2,1\times 2,1$ 3,6 $3,6 \times 3,6$ $3,0 \times 3,6$ $1,2 \times 1,5$ $2,1\times2,4$ 4,2 $4,2 \times 4,2$ $1,2 \times 1,8$ $2,1 \times 2,7$ $3,3 \times 3,9$ $4,8 \times 4,8$ $3,6 \times 4,2$ $1,2 \times 2,1$ $5,4 \times 5,4$ $3,9 \times 4,5$ $1,2\times2,4$ 0,3 $4,2 \times 4,8$ $1,2 \times 2,7$ $4,5 \times 5,1$ 0,6 $4,8 \times 5,4$ $5,1 \times 5,7$ 5,4×6,0

4.8.

Черт. 25. Сопряжение фундамента с колонной - ; l - ; 2 - ; 3 -

4.9.2400 , 2400 -

.

 $\begin{array}{ccc} & & (& . & .25). \\ \textbf{4.10.} & & d_p & & 50 & & d \; , \end{array}$

: ; - . . 5.

$$l_d \ge 1.2$$
 $d_c = 0.5 + 0.33 l_d$, (109)

 l_d , $l_d < 1,2 \qquad , \qquad \qquad ; \qquad \qquad ; \qquad \qquad l_c, \qquad : \label{eq:ld}$

2.03.01-84, 2.02.01-83 . 37 71

$$l_c = l_d [1 - 0.8 (l_d - 0.9)],$$
 (110)

. 6 1,2 .

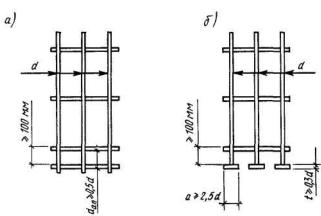
t/h_{cf} $t/d_p(. \underline{\qquad .7})$	d_c		
ww.cf	$e_0 \le 2l_c$	$e_0 > 2l_c$	
> 0,5	l_c	l_c	
≤ 0,5	l_c	$l_c + 0.33 (l_c - 2t)(e_0/l_c - 2),$ $l_c \le d_c \le 1.4 l_c$	
		$l_c \le d_c \le 1,4 l_c$	

6

5

		d
	15	20
	30d (18d)	25d (15d)
-III		
	35 <i>d</i> (18 <i>d</i>)	30 <i>d</i> (15 <i>d</i>)
	25d (15d)	20d (10d)
A-II		
	30 <i>d</i> (15 <i>d</i>)	25d (10d)

: 1. *d* -


2. 3.

 $l_{an}N/R_sA_s$,)

N -

, $R_s A_s$ -

. 26).)

Черт. 26. Детали анкеровки рабочей арматуры

$$N = 15d_{an} R_s A_s / l_a \tag{111}$$

4.11.

2.03.01-84, 2.02.01-83 . 38 71

$$d_c \ge N_p / \{ [2 (l_d + 0.1) + h_c' - b_c'] R_{an'} \};$$
(112)

$$d_c \ge N_p / 2 (b_c' + h_c') R_{an}''. \tag{113}$$

(112), (113):

 d_c -

 N_p - h_c', b_c' -

 $R_{an}^{\prime}, R_{an}^{\prime\prime}$ -. 7, / ².

7

$R_{an}{}'$	$R_{an}^{\prime\prime}$
$0.35 R_{bt}$	$0,40R_{bt}$
$0.18~R_{bt}$	$0,20~R_{bt}$

 R_{bt}

4.12.

0,75 (0,75 d_p 200

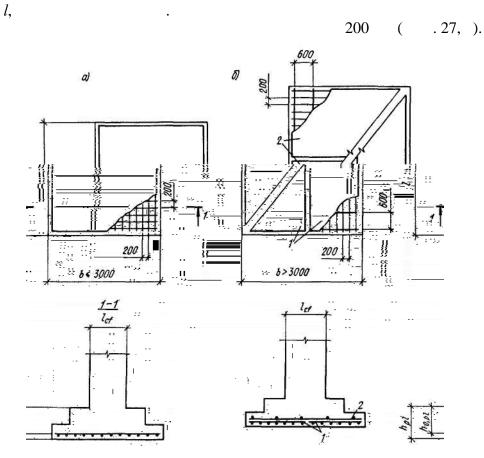
> . 2.34, 2.35 . 8.

8

	t,			
$e_0 \le 2l_c$	$e_0 > 2l_c$			
0,2 <i>l_c</i> ,	0,3 <i>l_c</i> ,	150	0,2 <i>l</i> _d ,	
150			150	
150	150		150	

200 4.13.

4.14.


) ≥ 15).

АРМИРОВАНИЕ ФУНДАМЕНТОВ

4.15. <u>23279-84</u>. 1.410-3

 $b \leq 3$, 4.16. . 27,).

b > 3ó 2.03.01-84, 2.02.01-83 . 39 71

Черт. 27. Армирование подошвы фундамента $b \le 3$; b > 3 ; l- ; 2 -

 $l \le 3$ 12 l > 3.

4.17.

$$l_b > l_{an} \tag{114}$$

, l_b -

10

,

$$l_b = 0.75 \ h_1 \sqrt{R_{bt} / p_{\text{max}}} \ , \tag{115}$$

 h_1 - ;

max - , $(\underline{5}), (\underline{6});$

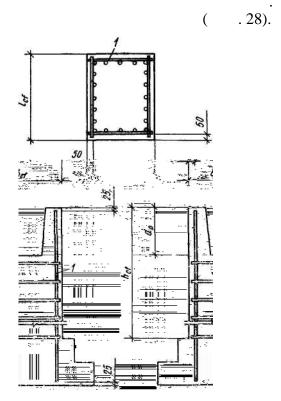
l_{an} -

$$l_{an} = (0.5 R_s A_{st} / R_b A_{sf} + 8) d, (116)$$

 A_{st}, A_{sf} ,

0.5d

2.03.01-84, 2.02.01-83 .40 71


 l_b .

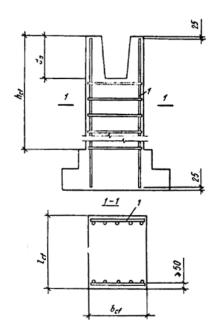
4.18.

23279-85. s s' 0,04 %

,

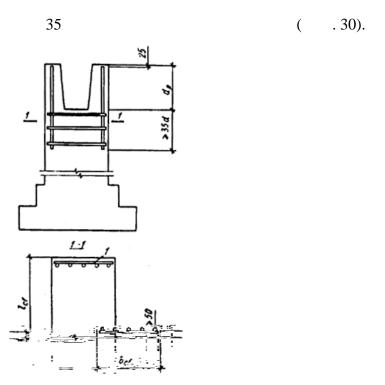
0,08 %. **4.20.**

Черт. 28. Армирование железобетонного подколонника пространственными каркасами, собираемыми из плоских сеток


1 -

4.21.

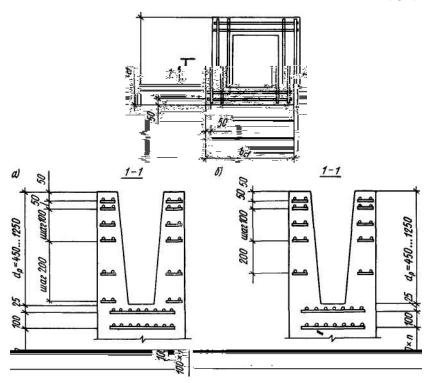
0,3 %,


. (. . 5.19 <u>2.03.01</u>-

<u>84</u>) 50 (. 29);

Черт. 29. Армирование железобетонного подколонника двумя сетками

4.22.


Черт. 30. Армирование бетонного подколонника, имеющего стакан под сборную колонку $\it l$ -

4.23. $10 \quad / \quad ^{2}, \qquad \qquad 0,8R_{b}$ ($0,02 \% \qquad \qquad ,$ 4.24. $12 \quad .$ $10 \quad .$

2.03.01-84, 2.02.01-83 . 42 71

4.25.

. 8 **4.26.** . 31.

Черт. 31. Схема расположения горизонтальных сеток армирования подколонника:

- $e_0 > l_c/2$; - $l_c/6 < e_0 \le l_c/2$

30 , 35

4.28. ().

4.27.

5. ПРОЕКТИРОВАНИЕ ФУНДАМЕНТОВ С ПОМОЩЬЮ ЭВМ

5.1. (, 1.412)

5.2.

2.03.01-84, 2.02.01-83 .43 71

5.3.

:

: .

;

;

:

;

5.4. . 9

9

		-			
1	2	3	4	5	
	-	-1	1.412	, ,	
-	-	-3()	1.412	,	
FUND-CM	-4		,	, ,	
80	-			,	I

. 9

1	6	7	8	9	10	11
1	1.1-1.4	3.1-3.5	4.1-4.3	,	10	11
=	1.1-1.4; 2.1-2.3	3.1; 3.4;	4.1-4.3			
		3.5				
FUND-CM	1.1; 1.2	3.1; 3.3-	-	-	-	-
		3.5				
80	1.1-1.4	3.1-3.4	4.1-4.3	_	-]

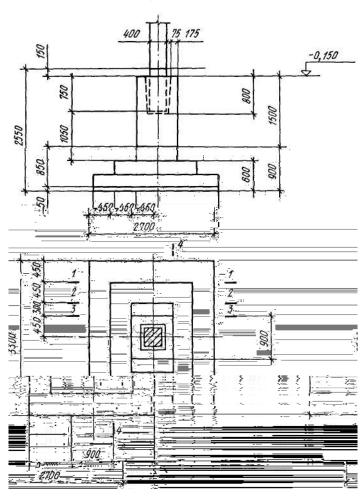
Пример 1.

: $l_c \times b_c = 400 \times 400 \qquad (\qquad .32); \qquad \qquad d_c = 750 \\ -0.15 \quad ; \qquad \qquad -2.55 \quad ;$

2.02.01-84, $l \times b = 3,3 \times 2,7$. 10.

10

	$\gamma_f = 1$			
	N, ()	, · (·)	Q_x , ()	
1	2	3	4	
1	2,0 (200)	0,08 (8)	0,03 (3)	
2	0,8 (80)	0,11 (11)	0,05 (5)	
3	1,75 (175)	0,28 (28)	0,06 (6)	


. 10

		$\gamma_f > 1$				
	N, ()	, · (·)	$Q_{x'}$ ()			
1	5	6	7			
1	2,4 (240)	0,096 (9,6)	0,036 (3,6)			
2	0,96 (96)	0,132 (13,2)	0,06 (6)			
3	2,1 (210)	0,336 (33,6)	0,072 (7,2)			

:

 γ_f - ;

б . - - - - - - III.

Черт. 32. Внецентренно нагруженный фундамент под сборную колонну

$$R_s = R_{sc} = 355$$
 (\$\infty\$ 6-8) (3600 / 2);

 $R_s = R_{sc} = 365$ ($\oslash 10-40$) (3750 / ²); $E_s = 2 \cdot 10^5$ $(2 \cdot 10^6$ / 2). 12,5 $R_b = 7.5$ (76,5 / ²); $R_{ht} = 0.66$ (6,75 / ²); $R_{bt,ser} = 1.0$ (10,2 / ²); $E_b = 21 \cdot 10^3$ (214 · 10³ / ²). $: \gamma_{h2} = 0.9; \ \gamma_{h9} = 0.9$ (). . 10 3 $e_0 = M/N = 0.336/2.1 = 0.16$, .e. $e_0 < 2l = 2 \cdot 0.4 = 0.8$. $0.2l_c = 0.2 \times 0.4 = 0.08$ $_{0} < 2l$ 0,15 . l = b = 0,4 $l_{cf} = b_{cf} = 2 \cdot 0.15$ $+2 \cdot 0.075 + l_c = 0.85$. $d_p = d_c + 0.05 = 0.75 + 0.05 = 0.8$ $l_{cf}{\times}b_{cf}{=0,}9{\times}0,9 \quad ;$ $= l \times b = 3,3 \times 2,7 = 8,91$ ²; $W = \frac{2.7 \cdot 3.3^2}{6} = \frac{4.9}{3}$ ó h_{pl} h = 2.55 - 0.15 = 2.4. h_{cf} $= 2.4 - 0.3 \cdot 3 = = 1.5$. <u>..2.6</u> $h_{cf} - d_p = 1.5 - 0.8 = 0.7$ $> 0.5 (<math>l_{cf} - l_c$) = 0.5 (0.9 -0,4) = 0,25 . 1: $= 2,4/8,91 + (0,096 + 0,036 \cdot 2,4)/4,9 = 0,268 + 0,038 = 0,306$ $3: = 2,1/8,91 + (0,336 + 0,072 \cdot 2,4)/4,9 = 0,235 + 0,1041 + (09)$ $p_{max}^{}1 + (09)$ $A_3 = b(l - 0.5b + b_{cf} - l_{cf}) = 2.7(3.3 - 0.5 \times 2.7 + 0.9 - 0.9) = 5.26$ $r = \gamma_{b2} R_{bt} / p_{max} = 0.9 \cdot 0.66 / (09 = 1.75)$ $, h_{nl} = 62 + 5 = 67 \qquad .$ $h_{0,pl} = 62$ _. 4.4 ____. 4 0,9 0,7 100

2.03.01-84,

2.02.01-83

. 45

71

2.03.01-84, 2.02.01-83 . 46 71 4,38 ³ -0,7 0,9 . $0.5 (b - b_{cf}) = 0.5(2.7 - 0.9) = 0.9$ (. . . 3 ____.7). $> h_{0,pl} = 0.9 - 0.05 = 0.85$ $h_{0,pl}$ $b_c \quad b_{cf}, l_c \quad l_{cf}$ $_{l} = 0.5 \ (l - l_{cf}) = 0.5(3.3 - 0.9) = 1.2 \quad ; \quad _{b} = 0.5 \ (b - b_{cf}) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.5(2.7 - 0.9) = 0.9 \quad ; \quad _{r} = 1.75 \ (\quad . \quad) = 0.9 \ (\quad$ $h_{0,pl} = -0.5b_{cf} + \sqrt{0.25_{cf}^2 + (bc_l - c_b^2)/(1+r)} = -0.5 \cdot 0.9 + \sqrt{0.25 \cdot 0.9^2 + (2.7 \cdot 1.2 - 0.9^2)/(1+1.75)}$ = 0.60 . : $h_{pl} = 0.9 h_1 = h_2 = h_3 = 0.3$. (16), $1 = 2 = 0.5b + (l+r)h_{01} - \sqrt{0.25b^2 + r(1+r)h_{01}^2} = 0.5 \cdot 2.7 + (1+1.75)(0.3-0.05) - 0.05$ $\sqrt{0.25 \cdot 2.7^2 + 1.75(1 + 1.75)0.25^2} = 1.35 + 0.69 - \sqrt{1.82 - 0.30} = 2.04 - 1.46 = 0.58$ $_1 = _2 = 0.45 < 0.58$ $l_1 = l - 2c_1 = 3, 3 - 2 \cdot 0, 45 = 2, 4$; $b_1 = b - 2c_2 = 2, 7 - 2 \cdot 0, 45 = 1, 8$. (17) (18) l_c l_{cf} $l_2 = (l - 2c_1 - l_{cf})h_3/(h_2 + h_3) + l_{cf} = (3, 3 - 2 \cdot 0, 45 - 0, 9)0, 3/(0, 3 + 0, 3) + 0, 9 = 1,65 \quad ;$ $b_2 = (b - 2c_2 - b_{cf})h_3/(h_2 + h_3) + b_{cf} = (2.7 - 2 \bullet 0.45 - 0.9) \ 0.3/(0.3 + 0.3) + 0.9 = 1.35 \quad .$ () $l_2 \times b_2 = 1.5 \times 0.9$. (17) (18). b_c l_c b_2 l_2 u_m b_m $h_{0,pl} = h_{01} + h_2 = 0.25 + 0.3 = 0.55$; $b - b_2 = 2.7 - 0.9 = 1.8 > 2h_{0,pl} = 2 \cdot 0.55 = 1.1$, $(7) b_m = b_2 + h_{0,pl} =$

0.9 + 0.55 = 1.45 ;

 $2 \cdot 0.55 - 0.25(2.7 - 0.9 - 2 \cdot 0.55)^2 = 0.82$ ²;

 $(\underline{4}) \ A_0 = 0.5b(l - l_2 - 2h_{0,pl}) - 0.25(b - b_2 - 2h_{0,pl})^2 = 0.5 \cdot 2.7(3.3 - 1.5 - 1.5)$

2.03.01-84, 2.02.01-83 .47 71

$$F = A_0 p_{max} = 0.82 \cdot 0.339 = 0.274 \qquad .$$

 $\gamma_{b2} \; R_{bt} \; b_m \; h_{0,pl} = 0.9 \cdot 0.66 \cdot 1.45 \cdot 0.55 = 0.474$

MH>0,274

. 32.

, p_{max} ,

. 11.

11

	i'	$\frac{2}{i}$, 2	$N_i^2/21,$	1+6e ₀ /l	$4e_0c_i/l^2$	$1+6e_0/l-4e_0c_i/l^2$, .
1-1	0,45	0,203	0,065	1,44	0,04	1,40	0,091
2-2	0,90	0,81	0,258	1,44	0,08	1,36	0,351
3-3	1,20	1,44	0,458	1,44	0,107	1,333	0,611
4-4*	0,90	0,81	0,315	1,00	0	1,00	0,315

* M_{y} 4-4 $_{0,y}$ =0, l b.

1-1:

$$\alpha_0 = {}_{i}/R_b b_i h_{0,i}^2 = 0.091/7.5 \cdot 2.7 \cdot 0.25^2 \cdot 0.072, \qquad v = 0.963; sl$$
(43)

$$_{sl} = 0.091 \cdot 10^4 / 365 \cdot 0.963 \cdot 0.25 = 10.1$$
².

2-2:

$$\alpha_0 = 0.351/7,5 \cdot 1,8 \cdot 0.55^2 = 0.086; \ \nu = 0.955;$$

$$A_{sl} = 0.351 \cdot 10^4 / 365 \cdot 0.955 \cdot 0.55 = 17.8$$

3-3:

$$\alpha_0 = 0.611/7.5 \cdot 0.9 \cdot 0.82^2 = 0.125; \ \nu = 0.932;$$

$$A_{sl} = 0.611 \cdot 10^4 / 365 \cdot 0.932 \cdot 0.85 = 20.6$$
².

sl 6 14

 \emptyset 14A-III ($A_{sl} = =21,55$ ²).

4-4:

$$\alpha_0 = 0.315/7.5 \cdot 1.5 \cdot 0.85^2 = 0.039; \ \nu = 0.98;$$

. 48 2.03.01-84, 2.02.01-83 71 $A_{sh} = 0.315 \cdot 10^4 / 365 \cdot 0.98 \cdot 0.85 = 10.1$ ². 17Ø10 -III ($A_{sb} = 13,4$ ²). 3-3
. $\frac{2.55}{r_1}$, $\frac{2.57}{r_2} = 0.8 > 2/3$, $crc \le 0.2$ (<u>. 2.61</u>). $\gamma_{n} = 1,2$: $_{r1}^{n} = 0.8 M_{r2}/1, 2 = 0.8 \bullet 0.611/1, 2 = 0.407$ $\cdot ; M_{r2}^{"} = M_{r2}/1, 2 = 0.611/1, 2 = 0.509$ $\cdot ...$ (144) <u>2.03.01-84</u>: a_{crc} , , o $a_{crc} = \delta \, \varphi_l \, \eta \, \, \sigma_s \, 20 \, (3.5 - 100 \mu) \, \sqrt[3]{d} \, / E_s, \label{eq:acrc}$ $\mu = 21,55/[30(90 + 180) + 25 \cdot 270] = 21,55/14 \ 850 = 0,0015$ ($\eta = 1,0; \; \delta = 1,0; \; \varphi_l = 1,6 - 15 \mu = 1,6 - 15 \cdot 0,0015 = 1,58; \; \sqrt[3]{d} \; = \sqrt[3]{14} = 2,4 \qquad .$ $\sigma_{_{\!S}}$ (<u>83</u>). $_{r} = {}_{r2} A_{sl3-3} / A_{sl3-3}^{tr} = 0,611 \cdot 21,55/20,6 = 0,64$. $\sigma_s = R_s M_{rl}^{n}/M_{pr} = 375 \cdot 0,407/0,64 = 238,5$ $a_{crc} = 1.0 \cdot 1.58 \cdot 1.0 \cdot 238.5 \cdot 20(3.5 - 100 \cdot 0.0015)2.4/2 \cdot 10^5 = 0.303$. 4.14 $\mu = 0.0015 < 0.008$ (77), (78): crc $_{0} = M_{crc} + \psi bh^{2} R_{bt,ser}; M_{crc} = R_{bt,ser} W_{nl},$ $W_{pl} = 2(I_{b,0} + \alpha I_{s,0})/(h-1) + S_{b,0}.(138)$ 2.03.01-84

$$S_{b,0}' - \alpha S_{s,0} = 0.5 (h - x) A_{bt};$$
 (139) 2.03.01-84
 $\alpha = {}_{s}/E_{b} = 2 \cdot 10^{5}/2, 1 \cdot 10^{4} = 9.5$
. 33:

 a_{crc}

2.03.01-84, 2.02.01-83 .49 71

$$\alpha \, S_{s,0} = 9.5 \cdot 21.55(90 -) = 18 \, 425 - 204.73x;$$

$$S_{b,0}' = 90 \cdot 30(x - 15) + 0.5 \cdot 180(x - 30)^2 = 90x^2 - 2700x + 40 \, 500;$$

$$A_{bl} = 270 \cdot 30 + 180 \, (60 - x) = 180x + 18 \, 900,$$

$$90x^2 - 2700 + 40 \, 500 + 204.73x - 18 \, 425 = 0.5 \, (90 -) \, (18 \, 900 - 180 \,) \qquad 15 \, 054.7x = 828 \, 425.$$

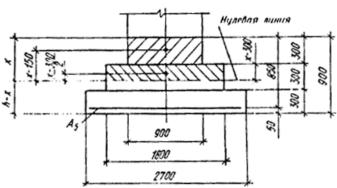
$$, = 55.0, \quad h - = 35.0 \quad .$$

$$W_{pl}:$$

$$I_{b,0} = 90 \cdot 55^3/3 + (180 - 90)25^3/3 = 5 \, 460 \, 000 \qquad ^4;$$

$$\alpha \, I_{s,0} = 9.524 \cdot 21.55 \cdot 30^2 = 184 \, 717.8 \qquad ^4;$$

$$S_{b,0} = 270 \cdot 30 \cdot 20 + 180 \cdot 5^2/2 = 164 \, 250 \qquad ^3;$$


$$W_{pl} = 2(5 \, 460 \, 000 + 184 \, 717.8)/35 + 164 \, 250 = 4.87 \cdot 10^5 \qquad ^3.$$

$$\cdot 4.14 \qquad 2.03.01 - 84, \qquad :$$

$$crc = R_{bl.ser} \, W_{pl} = 1 \cdot 4.87 \cdot 10^6 = 0.487 \qquad :$$

$$\psi = 15 \, \frac{\mu \alpha}{\eta} = 15 \cdot 0.0015 \cdot 9.5 = 0.214 < 0.6;$$

$$0 = 0.487 + 0.214 \cdot 0.9 \cdot 0.9^2 \cdot 1.0 = 0.487 + 0.156 = 0.643 \qquad (b)$$

Черт. 33. Положение нулевой линии сечения плитной части фундамента

 a_{crc} 0: $\sigma_s = R_s M_0 / M_{pr} = 365 \cdot 0,643/0,64 = 367 ;$ $a_{crc} = 1,0 \cdot 1,0 \cdot 1,0 \cdot 367 - 20(3,5 - 100 \cdot 0,0015) \frac{\sqrt[3]{14}}{2 \cdot 10^5} = 0,296$ $r^{n}_{crc} = 0,509 \text{ M} \cdot (34)$

2.03.01-84, 2.02.01-83 .50 71

$$a_{crc,cr} = \frac{0.296 \left(M_{r2}^{n} - M_{crc}\right)}{M_{0} - M_{crc}} = \frac{0.296 \left(0.509 - 0.487\right)}{0.643 - 0.487} = 0.042$$

$$a_{crc,dl} = \frac{a_{crc,cr} \varphi_l' M_{rl}^n}{M_{r2}^n},$$

$$\varphi_l' = \frac{\frac{1,8\varphi_l M_{crc}}{M_{r2}^n}}{M_{r2}^n} = \frac{\frac{1,8 \cdot 1,58 \cdot 0,487}{0,509}}{0,509} = \frac{2,72 > \varphi_l = 1,58;}{0,11} < a_{crc,dl} = 0,2 ,$$

$$(\mu < 0,008)$$

acre = 0,296mm

0,042mm

More = 0,487NH·H Mr. = 0,509MII·H Mo = 0,543MH·H

Черт. 34. Нахождение интерполяционного значения ширины раскрытия трещин

$$A_{s_1}$$
 A-III: 14Ø14 -III (21,55 ²)

(
$$l-1, \underline{20}$$
) . 12. $h_{cf} = 2,4-0,9=1,5$.

12

	N_1 ,	$M_x + Q_x h_{cf}$, \cdot
1	2,4	$0,096 + 0,036 \cdot 1,5 = 0,150$
2	0,96	$0,132 + 0,060 \cdot 1,5 = 0,222$
3	2,1	$0,336 + 0,072 \cdot 1,5 = 0,444$

 \emptyset 12 -III 200 (5

$$= \frac{N + R_s A_s}{\gamma_{b2} R_b b} = \frac{2.1 + 365 \cdot 5.65 \cdot 10^{-4}}{0.9 \cdot 7.5 \cdot 0.9} = 0.38 ,$$

 $\xi = x / h_0 = 0.38 / 0.85 = 0.45,$ (25) 2.03.01-84 $\xi_R = \omega / [1 + \sigma_{sR} (1 - \omega / 1, 1) / \sigma_{sc.u}];$ $\omega = \alpha - 0.008 R_b$; $\alpha = 0.85$; $R_b = 7.5 \cdot 0.9 = 6.75$; $\omega = 0.85 - 0.008 \cdot 6.75 = 0.796$.), $\sigma_{SR} = R_{S}$ $\sigma_{\!sp}$ $-\sigma_{sp} = 365$; $S_{sc,u} = 500$ $\xi_R = 0.796/[1+365 (1-0.796/1.1)/500] = 0.66 > \xi = 0.45.$ (36) 2.03.01-84 (<u>. 2.41</u>): $Ne \le R_b b \times (h_0 - 0.5 x).$ $e_{sl} = e_{cf}/30 = 90/30 = 3$; $= _{sl} + e_0 + 0.5 \; (h_0 - a') = 0.03 + 0.444/2.1 + 0.5 \; (0.85 - 0.05) = 0.64 \quad ;$ $Ne = 2.1 \cdot 0.64 = 1.34$ · . $6,75 \cdot 0,9 \cdot 0,38 \times (0,85 - 0,5 \cdot 0,38) =$ 1,52 \cdot ; Ne = =1,34· < 1,52 (<u>58</u>) (59).3: $e_r = 0.444/2, 1 = 0.187$; l/6 = 0.4/6 = 0.067 ; 0.5l = 0.2 . 0.067 < x = 0.187 < 0.2,(59): $M_{kx} = +Q_x d_p - 0.7Ne_x = 0.336 + 0.072 \cdot 0.8 - 0.7 \cdot 2.1 \cdot 0.187 = 0.12 \text{ MH} \cdot ;$ $A_0 = M_{kx} / \gamma_{b2} R_b b h_o^2 = 0.12/0.9 \cdot 7.5 \cdot 0.9 \cdot 0.85^2 = 0.027, v = 0.986;$ $A_s = A_{s'} = M_{kx}/R_s \ v h_0 = 0.12 \cdot 10^4/365 \cdot 0.986 \cdot 0.85 = 3.82$ ² < 5.65 ², 5Ø12 -III _. 2.52. $\sigma_b^{} = N/A - M/W = 2,1/0,9 \bullet 0,9 - 0,444 \bullet 6/0,9 \bullet 0,9^2 = 2,59 - 3,65 = -1,06$

2.02.01-83

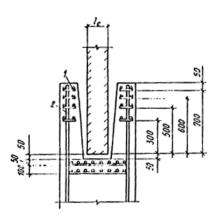
2.03.01-84,

. 51

71

2.03.01-84, 2.02.01-83 .52 71

$$2R_{bt,ser} = 2.0$$
 , 1,06


3:
$$e_0 = M_x/N = 0.336/2, 1 = 0.16 < 0.5l = 0.2 ,$$

$$A_{s}^{tr} = M_{kx}/R_{s}^{2} \sum_{i=0}^{n} z_{i} = 0.12 - 10^{4}/365 (0.70 + 0.65 + 0.6 + 0.5 + 0.3) = 1.20$$

$$4 \otimes 8 - \text{III}_{s} = 2.01 \quad {}^{2} > A_{s}^{tr} = 1.20 \quad {}^{2}.$$

$${}^{tr}_{s} = 0.12 \cdot 10^{4}/365 (0.70 + 0.60 + 0.50 + 0.30) = 1.56 \quad {}^{2}.$$

$$4 \otimes 8 - \text{III}, \qquad .35.$$

Черт. 35. Расположение горизонтальных сеток армирования стакана фундамента l -

,
$$N_{c} \leq {}^{\psi}_{loc} R_{b,loc} A_{loc1}.$$

$$N_{c} \qquad (26)$$

$$: N_{c} = \alpha N_{max}.$$

$$0 > l_{c}/6, \quad {}^{\psi}_{loc} = 0.75.$$

$$R_{b,loc} = \varphi_{b} R_{b}; \varphi_{b} = {}^{3}\sqrt{A_{loc2} / A_{loc1}} = {}^{3}\sqrt{0.9 \cdot 0.9 / 0.5 \cdot 0.5} = 1.48,$$

$$A_{loc2} - \qquad ;$$

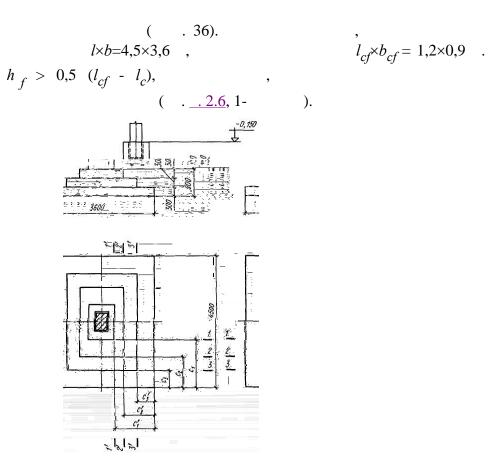
$$A_{loc1} - \qquad .$$

2.03.01-84, 2.02.01-83 . 53 71

$$R_{b,loc} = \gamma_{b2} \ \gamma_{b9} \ R_b \ \varphi_b = 0.9 \cdot 0.9 \cdot 7.5 \cdot 1.48 = 8.99 \qquad N_c \ (26): \qquad \alpha = 1 - 0.4R_{bt} A_{ct}/N, \qquad 0.85; \qquad = 2 (l_c + b_c) d_c = 2 (0.4 + 0.4) 0.75 = 1.2 \ ; \qquad \alpha = 1 - 0.4 \cdot 0.66 \cdot 0.9 \cdot 0.9 \cdot 1.2/2.1 = 0.88; \qquad N_c = 2.4 \cdot 0.88 = 2.11 \ \mathrm{MH}. \qquad 0.75 \cdot 8.99 \cdot 0.25 = 1.69 \ \mathrm{MH} < N = 2.11 \ \mathrm{MH}. \qquad 0.8 \times 0.8 \qquad \varnothing 6 \ \mathrm{-HII}$$

$$R_{b,red} = R_b \ \varphi_{loc,b} + \varphi \ \mu_{xy} \ R_{s,xy} \ \varphi_{loc,s}, \qquad \varphi_b = \sqrt[3]{A_{bec1}} / A_{bec1}; \qquad (67)$$

$$R_{b,red} = R_b \ \varphi_{loc,b} + \varphi \ \mu_{xy} \ R_{s,xy} \ \varphi_{loc,s}, \qquad \varphi_b = \sqrt[3]{A_{bec2}} / A_{bec1}, \qquad (70) \ \varphi = 1/(0.23 + \psi), \qquad (71) \ \psi = \mu_{xy} \ R_{s,xy} / (R_b + 10), \qquad \mu = (n \ A_{xx} I + n \ A_{xy} I_y) / A_{cf,s} = 2 \cdot 9 \cdot 0.283 \cdot 80/80 \cdot 80 \cdot 10 = 0.0064; \qquad \psi = 0.0064 \cdot 360/(0.9 \cdot 7.5 + 10) = 2.30 / 16.75 = 0.137; \qquad \varphi = \frac{1}{0.23 + 0.137} = 2.72; \qquad \varphi_{loc,s} = 4.5 - 3.5 A_{loc1} / A_{cf} = 4.5 - 3.5 \cdot 50 \cdot 50/80 \cdot 80 = 3.13. \qquad R_{b,red} = 6.75 \cdot 1.48 + 2.74 \cdot 0.0064 \cdot 360 \cdot 3.13 = 10 + 19.8 = 29.8 \qquad 29.8 \cdot 0.25 = 7.45 \ \mathrm{MH} > N_c = 2.14 \ \mathrm{MH}, \qquad no \qquad \qquad 2.51: \qquad N_c \le \psi \ R_{b,loc} A_{loc1}, \qquad A_{loc1} = (l_p + z)(b_p + z), \qquad (2.51: \ N_c \le \psi \ R_{b,loc} A_{loc1},$$


100

,

2.03.01-84, 2.02.01-83 . 54 71

Пример 2.

:

Черт. 36. Внецентренно нагруженный фундамент с моментами в двух направлениях

$$h_{0,pl} \tag{9}:$$

$$r = \gamma_{b2} R_{bt} / p_{max} = 1,1 \bullet 0,75/0,454 = 1,82, c_l = 0,5 \ (4,5-1,2) = 1,65 \quad , c_b = 0,5 \ (3,6-0,9) = 1,35$$

2.03.01-84, 2.02.01-83 . 55 71

 $\gamma_{h2} = 1.1,$

 $h_{0,nl} = -0.5 \cdot 0.9 + \sqrt{0.25 \cdot 0.9^2 + (3.6 \cdot 1.65 - 1.35^2)/(1 + 1.82)} = 0.84$. $h_{pl} = 0.9$ 0.3; $h_{0,pl} = 0.85$. $c_1 = c_1'$ $c_2 = c_2'$. $\gamma_{b2} = 1$,

max

$$p_{x,max} = 0,454/1,1 = 0,413$$
 (4,13 / ²); $p_{y,max} = 0,42/1,1 = 0,382$ (3,82 / ²).

1-
$$h_1 = 0.3$$
 , = 0.413 (4.13 / 2), $b = 3.6$ $c_3 = 0.6$
= 0.45 (4.5 / 2) > 0.413 (4.13 / 2);
2- $h_1 + h_2 = 0.6$ $b = 3.6$ $c_2 = 1.05$ = 0.56 (5, / 2) > 0.413 (4.13 / 2); $c_2 = 1.2$ $p = 0.38$ < 0.413 -

1,2 , ; $c_1 = 1.65 -$

 $h_{0,pl}$.

$$a_{3}' = 0.6$$
 = 0,475 (4,75 / ²) > 0,382 (3,82 / ²); $a_{2}' = 1.05$; $a_{1}' = 1.35$.

<u>(44)</u>

$$N = 4.8$$
 (480 c), $_{x} = 1.92$ · (192 ·), $_{x} = 0.4$, $l = 4.5$.
 $I-I$:

$$c_{I-I} = 1,65$$
 ; $\overline{}_{1-1} = 4,8 \cdot 1,65^2 (1 + 6 \cdot 0,4/4,5 - 4 \cdot 0,4 \cdot 1,65/4,5^2) / 2 \cdot 4,5 = 2,04 \text{ MH} \cdot (204 \cdot 1,65/4,5^2)$;

2-2:

$$c_{2\text{-}2} = 1,05 \quad ; \quad \overline{}_{2\text{-}2} = 4,8 \cdot 1,05^2 \left(1 + 6 \cdot 0,4/4,5 - 4 \bullet 0,4 \bullet 0,6/4,5^2\right) / \ 2 \bullet 4,5 = 0,853 \ \text{MH} \cdot \quad (85,3) \cdot \quad ; \quad (85,3) \cdot \quad ;$$

3-3:

$$_{3-3} = 0.6$$
 ; $_{3-3} = 4.8 \cdot 0.6^2 (1 + 6 \cdot 0.4/4.5 - 4 \cdot 0.4 \cdot 0.6/4.5^2) / 2 \cdot 4.5 = 0.285$ · (28.5 ·).

(42), (43).

1-1:

$$\alpha_0 = 2.04 / 8.5 \cdot 1.5 \cdot 0.855^2 = 0.219,$$

. 18 «

2.03.01-84, 2.02.01-83 . 56 71 v = 0.875; $_{s/1} = 2.04 \cdot 10^4 / 365 \cdot 0.875 \cdot 0.855 = 74.7$ ²; 2-2: $\alpha_0 = 0.853/8.5 \cdot 2.4 \cdot 0.555^2 = 0.136;$ v = 0.9267; $A_{s/2} = 0.853 \cdot 10^4 / 365 \cdot 0.9267 \cdot 0.555 = 45.4$ ²; 3- 3: $\alpha_0 = 0.285/8.5 \cdot 3.6 \cdot 0.255^2 = 0.143;$ v = 0.9225; $A_{s/3} = 0.285 \cdot 10^4 / 365 \cdot 0.922 \cdot 0.255 = 33.2$ ². 18Ø25 A-III , $e_{0,v}$, b $_{x}$, $e_{0,x}$, lN = 4.8 (480), = 1,2 · (120 ·), $_{0,y} = 0.25$; b = 3.6 . *1-1*: $c_{1,1}' = 1.35$; $-\frac{1}{1-1} = 4.8 \cdot 1.35^2 (1 + 6 \cdot 0.25/3.6 - 4 \cdot 0.25 \cdot 1.35/3.6^2) / 2 \cdot 3.6 = 1.59$ (159) *2-2*: $c_{2,2}' = 1.05$; $c_{2-2}' = 4.8 \cdot 1.05^2 (1 + 6 \cdot 0.25/3.6 - 4 \cdot 0.25 \cdot 1.05/3.6^2) / 2 \cdot 3.6 = 0.983$ $(98,3 \cdot);$ *3-3*: $_{3-3}' = 0.6$; $_{3-3}' = 4.8 \cdot 0.6^2 (1 + 6 \cdot 0.25/3.6 - 4 \cdot 0.25 \cdot 0.6/3.6^2) / 2 \times 3.6 = 0.329$ · (32.9) ·). (43).1'-1': $\alpha_0 = 1,59/8,5 \cdot 2,4 \cdot 0,835^2 = 0,112;$ $A_{sh} = 1,59 \cdot 10^4 / 365 \cdot 0,94 \cdot 0,835 = 55,5$ ²; 2'-2': $\alpha_0 = 0.983/8.5 \cdot 3.3 \cdot 0.535^2 = 0.123;$ $A_{sh2} = 0.983 \cdot 10^4 / 365 \cdot 0.935 \cdot 0.535 = 53.8$ ²; 3'-3': $\alpha_0 = 0.329/8.5 \cdot 4.5 \cdot 0.235^2 = 0.156;$ v = 0.915; $A_{sh3} = 0.329 \cdot 10^4 / 365 \cdot 0.915 \cdot 0.235 = 41.9$ ².

(88,4)

(44),

22Ø18 A-III

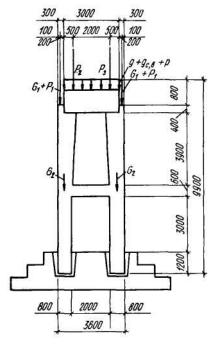
$$(56 \quad ^{2}).$$

$$_{x} = 0,40 \quad + h_{cf}/30 = 0,4 + 1,2/30 = 0,44 \quad < 0,45l_{cf} = 0,54 \quad e = 0,25 \quad + b_{cf}/30 = 0,28$$

$$> b_{cf}/6 = 0,15 \quad - \quad 4-$$

$$(... 4)$$

$$l_{cf} = 1,2 \quad , b_{cf} = 0,9 \quad , x = 3(1,2/2 - 0,44) = 0,48 \quad , \quad = 3(0,9/2 - 0,28) = 0,51 \quad , \quad _{b} = (0,48 \cdot 0,51)/2 = 0,12 \quad ^{2}.$$


$$N \le R_{b} A_{b}$$

$$. 15 \quad 2.03.01-84 \quad \gamma_{b9} = 0,9$$

$$0,9 \cdot 8,5 \cdot 0,12 = 0,92 \text{ MH } (92 \quad c) < N = 4,8 \text{ MH } (480 \quad c).$$

Пример 3.

:
$$Q = 1230$$
 (125)
 $0. \pm 0.00 = 98$ (10 / 0.000)
 $0. \pm 0.00$ (125)

Черт. 37. Расчетная схема и нагрузки на сборный подколонник

. 13

13

	, / (/)	1, ()	2, ()	3, ()
1	710 (72)	1590 (162)	4480 (456,5)	6900 (703,5)
2	710 (72)	1590 (162)	3020 (308)	-1350 (-138)

, ; σ-

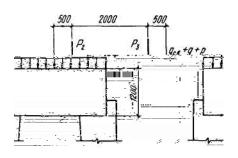
 $g - g_1 - \vdots$;

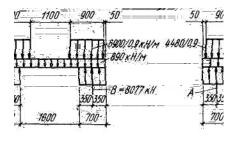
-:

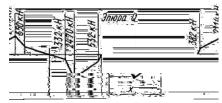
 $G_1, \quad _1$ - ;

 G_2 - ;

 P_2, P_3


25; $R_b = 14.5$ (148 / ²); $P_{bt} = 1.05 \text{ M}$ (10.7)


/ ²).


$$E_b = 27 \cdot 10^3$$
 (275 • 10³ / ²), $\gamma_{b2} = 1,1$.

 γ_n 1

· ,

Черт. 38. Схема нагрузки на оголовок подколонника, эпюры M и N

$$= 890 \cdot 3 + 4480 + 6900 - 8077 = 5973$$
 (609);

```
=(8077-6900)/890=1,32; =8077(1,32-0,35)-6900(1,32-0,5)-890 \cdot 0,5 \cdot 1,32^2=1401
                                                                                                                                            (142.8 \ c\cdot).
                                                                                                                                                                                                                                                                                      Q = 2470
                                                                                                                                                         = 1,4 · (143 · ).
(252 c)
                                                                         1500 ,
                                                               72-1100
                                                                                                                               6Ø12 -I, 300
                                                                      A_{sw} = 6.79 <sup>2</sup>, _{s} = 210\,000 (2,1 • 10^{6} / <sup>2</sup>),
                                                                                                            R_{sw} = 175 (1800 / <sup>2</sup>).
                            (72) _____2.03.01-84.
                                                          Q \le 0.3 \ \varphi_{w1} \ \varphi_{b1} \ R_b \ b \ h_0; \alpha = {}_{s}/E_b = 210\ 000/27 \cdot 10^3 = 7.78;
                                                                                                \mu_{w} = A_{sw}/bs_{w} = 6,79/150 \cdot 30 = 0,0015.
                                                        (73), (74) ______2.03.01-84
                                                                                   \varphi_{w1} = 1 + 5\alpha\mu_{w} = 1 + 5 \bullet 7,78 \bullet 0,0015 = 1,058;
                                                                                              \varphi_{b1} = 1 - \beta R_b = 1 - 0,001 \cdot 14,5 = 0,855.
                              0.3 \ \varphi_{w1} \ \varphi_{b1} \ R_b \ b \ h_0 = 0.3 \bullet 1,058 \bullet 0,855 \bullet 14,5 \bullet 1,16 = 6,85 \ \mathrm{MH} \ (698 \ \ \mathrm{c}) > Q = 2,47 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 2,10 + 
MH (252 c).
                                                                           (75) _____2.03.01-84,
                                                                                                                          Q \leq Q_h + Q_{sw} + Q_{sinc}.
                                                         (80), (81) 2.03.01-84
                                                                                                                                                                              0,396 \cdot (40,4 \cdot );
                                                                  q_{sw} =
                                                                                                                                                                                                     3,27 > 2h_0 = 2 \cdot 1,16 = 2,32.
                     0 =
                                                      =2,32 , Q_b + Q_{sw} + Q_{sin} = 2 \cdot 1,05 \cdot 1,5 \cdot 1,16^2 / 2,32 + 0,396 \cdot 2,32 = 2,75 \text{ MH } (280)
  c) >Q=2,47 MH (252 c).
                                                                                                                                                                                                                                                                             = 1,4 \text{ MH } (143)
  c).
                                                 6\varnothing 32 -III _{s} = 48,26 ^{2}, R_{s} = 365 (3750 / ^{2}).
```

 $= 890 \cdot 1.5 + (6900 \cdot 2.15 + 4480 \cdot 0.15)/2.3 = 8077$ (823).

2.03.01-84, 2.02.01-83 . 60 71

$$b=365 \cdot 48,26/14,5 \cdot 150 = 8,1 \qquad , \qquad \xi = x/h_0 = 8,1/1,16 = 0,07.$$

$$(26) \qquad 2.03.01 - 84: \quad \omega = \alpha - 0,008 \ R_b = 0,85 - 0,008 \cdot 14,5 = 0,734;$$

$$(25) \qquad 2.03.01 - 84:$$

$$\frac{\omega}{1+\frac{\sigma_{sR}}{\sigma_{sc,u}}} \left(1-\frac{\omega}{1,1}\right) = \frac{0,734}{1+\frac{365}{400}} = \frac{0,734}{1,1} = 0,563 > \xi = 0,07.$$

$$\xi < \xi_R \qquad (28) \qquad 2.03.01 - 84 \qquad s' = 0$$

$$R_b \ bx \ (h_0 - 0,5) = 14,5 \cdot 1,5 \cdot 0,081 \ (1,16 - 0,5 \cdot 0,081) = 1,97 \ \text{MH} \cdot (201 \quad \cdot) > = 1,4 \quad \cdot (143 \quad \cdot).$$

$$N = P_1 + G_1 = 1590 + 290 = 1,88 \text{ MH } (191,6 \text{ c}).$$

(101) _____

2.03.01-84:

$$N \leq \psi R_{b,loc} A_{loc1}; A_{loc1} = 50 \cdot 20 = 1000 \text{ c}^{-2} (b - 50); \psi = 0,75;$$

$$\alpha = 13,5 R_{bl}/R_b = 13,5 \cdot 1,05/14,5 = 0,977; A_{loc2} = 80 \cdot 20 = 1600^{-2};$$

$$\psi_b = \sqrt[3]{A_{loc2}/A_{loc1}} = \sqrt[3]{1600/1000} = 1,17.$$

$$(102) \underline{\qquad 2.03.01-84}$$

$$R_{b,loc} = \alpha \varphi_b R_b = 0,977 \cdot 1,17 \cdot 14,5 = 16,6 \qquad (169 / ^2);$$

$$\psi R_{b,loc} A_{loc1} = 0,75 \cdot 16,6 \cdot 1000 \cdot 10^{-4} = 1,25 \text{ MH } (127 \text{ c}) < N = 1,88 \text{ MH } (191,6 \text{ c}).$$

$$(101) \underline{\qquad 2.03.01-84} \qquad 0 \qquad 4 \qquad \varnothing 6 \text{ -I}$$

$$100 \times 100 \qquad 100 \qquad .$$

$$(103) \underline{\qquad 2.03.01-84}: N \leq R_{b,red} A_{loc1}.$$

$$(49) \cdot (51) \underline{\qquad 2.03.01-84}:$$

$$\mu_{xy} = \frac{n_x A_{xx} l_x + n_y A_{xy} l_y}{n_x l_x + n_y A_{xy} l_y} = \frac{7 \cdot 0,283 \cdot 66 + 7 \cdot 0,283 \cdot 60}{160 \cdot 100 \cdot 100} = 1,17.$$

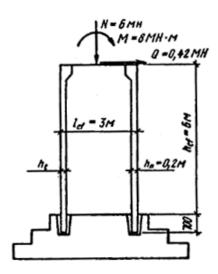
$$(49) - (51) = \frac{2.03.01-84}{2.03.01-84}; \quad N \le R_{b,red} A_{loc1};$$

$$(49) - (51) = \frac{2.03.01-84}{A_{ef} s};$$

$$\mu_{xy} = \frac{n_x A_{sx} l_x + n_y A_{sy} l_y}{A_{ef} s} = \frac{7 \cdot 0.283 \cdot 66 + 7 \cdot 0.283 \cdot 60}{66 \cdot 60 \cdot 10} = \frac{0.0063}{0.0063};$$

$$\psi = \frac{\mu_{xy} R_{s,xy}}{R_b + 10} = \frac{0.0063 \cdot 225}{14.5 + 10} = 0.0579;$$

$$\varphi = \frac{1}{0.23 + \psi} = \frac{1}{0.23 + 0.0579} = \frac{1}{0.23 + 0.0579} = \frac{1}{0.23 + 0.0579}$$


$$(104) = \frac{2.03.01-84}{0.23 + 0.0579} = \frac{1}{0.23 + 0.0579} = \frac{1}{0.0579} = \frac{1}{$$

2.03.01-84, 2.02.01-83 . 61 71

$$\begin{split} R_{b,red} = R_b \; \varphi_b + \varphi \; \mu_{xy} \; R_{s,xy} \; \varphi_s = 14.5 \cdot 1.17 + 3.47 \cdot 0.0579 \cdot 225 \cdot 1 = 21.8 \qquad (220 \qquad / \quad ^2); \\ R_{b,red} \; A_{loc1} = 21.8 \cdot 0.1 = 2.18 \qquad (220 \quad) > N = 1.88 \qquad (192 \quad). \end{split}$$

Пример 4.

 $b_{cf} = 6.0$, $b_{cf} = 1.5$, $l_{cf} = 3.0$. t = 0.2 (.39).

Черт. 39. Сборно-монолитный железобетонный фундамент

2.03.01-84, 2.02.01-83 . 62 71

A-I
$$R_{sw} = 147 \qquad (1500 \quad / \quad ^{2}) - \quad . \quad \underline{. \quad 3.31}.$$

$$e_0 = \frac{10}{6,35} = 1,58 \quad ; e_a = e_0 + 0,5 \ (l_{cf} - t) = 1,58 + 0,5 \ (3 - 0,2) = 2,98 \quad ;$$

$$\Delta R_b = R_b - R_{bm} = 15,95 - 6,32 = 9,63 \qquad (98,5 \ / \ ^2),$$

$$h_0 = 3 - \frac{0,2}{2} = 2,9 \quad .$$

(<u>97</u>) - (<u>99</u>):

$$= 2.9 - \sqrt{\frac{2.9^2 - \left[2 \cdot 6.35 \cdot 2.98 - 9.63 \cdot 1.5 \cdot 0.2(3 - 0.2)\right]}{6.32 \cdot 1.5}} = 0.42 ;$$

$$A_s = \frac{(6,32 \cdot 1,5 \cdot 0,42 + 9,63 \cdot 1,5 \cdot 0,2 - 6,35)10^4}{365} = \frac{14,3}{2}$$

 $16\varnothing 12 \text{ A-III}; A_s = 18,1$ ².

$$s = 1,2$$
 .

(101)

$$A_{SW} \ge \frac{\gamma_c b s R_{bt}}{R_{sw}} = \frac{0.35 \cdot 1.5 \cdot 1.2 \cdot 0.535}{147} = \frac{23 \cdot 10^{-4}}{2} = 23 \cdot 2.$$

$$7 \qquad \varnothing 16 \quad -I, \quad SW = 28.2 \quad 2.$$

$$(102)$$

$$H = \frac{A_{SW} \cdot 100}{b c} = \frac{28.2 \cdot 100}{150 \cdot 120} = 0.157 \% > 0.15 \%$$

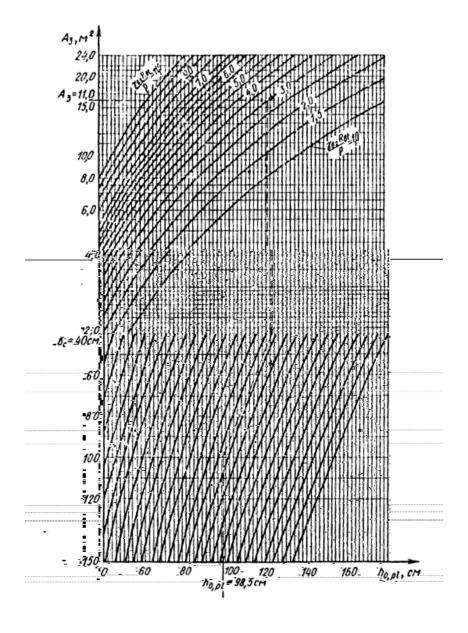
$$\mu = \frac{A_{sw} \cdot 100}{bs} = \frac{28,2 \cdot 100}{150 \cdot 120} = 0,157 \% > 0,15 \%.$$

(101) (102)

$$700 \quad , \qquad 750 \quad , \\ 300\times1600 \quad , \qquad 350\times1650 \quad . \\ 25 \quad \\ R_{bt} = 1,05\cdot1,1 = 1,155 \qquad (11,77 \quad / \quad ^2).$$

$$N = {}_{S}R_{S} = 0,00143 \cdot 365 = 0,522$$
 (53,6 c).

$$(\underline{103})$$
 $(\underline{105})$: $R_{an}' = 0.18 R_{bt}$,

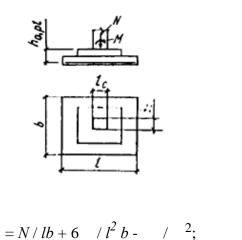

$$N_p = 2 \cdot 0.75 (0.325 + 1.625) \cdot 0.18 \cdot 1.155 = 0.54 \text{ M} \quad (55) > N = 0.522 \quad (53.6)$$

2.03.01-84, 2.02.01-83 . 63 71

$$(\underline{104}) \quad (\underline{106}): R_{an}^{"} = 0.2 \ R_{bt};$$

$$N_p = 2 \cdot 0.7 \ (0.2 + 1.5) \cdot 0.2 \cdot 1.155 = 0.55 > N = 0, \ 522 \ \mathrm{MH} \ (53, 6 \ \ \mathrm{c}).$$

$$(\underline{103}) \qquad (\underline{104}) \ -$$


ПРИЛОЖЕНИЕ 1

ОПРЕДЕЛЕНИЕ РАБОЧЕЙ ВЫСОТЫ $h_{0,pl}$ ФУНДАМЕНТА

 $= N / lb - / ^2;$

2.03.01-84, 2.02.01-83 . 64 71

$$= N/lb + 6 - /l - b - - / - \frac{1}{2};$$

$$A_3 = b (l - 0.5b + b_c - l_c) - \frac{2}{2}.$$

$$0 \qquad :$$

$$3 = 11 \qquad \gamma_{b2} R_{bt} / p = 3.0,$$

$$R_{bt} - \qquad , \qquad / - \frac{2}{2};$$

$$\gamma_{bt} - \qquad .15 \underline{\qquad 2.03.01-84}.$$

$$b_c = 100 \qquad \qquad h_{0,pl} = 98.5 \qquad .$$

ПРИЛОЖЕНИЕ 2 МАКСИМАЛЬНОЕ ДЕЛЕНИЕ ГРУНТА НА ПОДОШВУ ФУНДАМЕНТА ИЗ БЕТОНА В15

$h_1^{};$	$h_{01}^{};$ $h_{01}^{}+h_{2}^{};$									15, _{max} ,
$h_1 + h_2;$	$h_{01}^{} + h_2^{};$,		(),	<i>b</i> ,
,	0'		1,8	2,4	3,0	3,6	4,2	4,8	5,4	6,0
0,30	0,255	0,75	0,16	0,23	0,27	0,29	0,31	0,32	0,33	0,33
		0,60	0,32	0,39	0,43	0,45	0,47	0,48	0,49	0,50
		0,45	0,70	0,78	0,82	0,85	0,87	0,89	0,90	0,90
0,60	0,555	1,50	-	-	-	0,19	0,23	0,27	0,29	0,30
		1,35	-	-	-	0,27	0,31	0,34	0,36	0,38
		1,20	-	-	0,32	0,38	0,43	0,46	0,48	0,50
		1,05	-	0,38	0,49	0,56	0,60	0,64	0,66	0,68
		0,90	0,46	0,68	0,80	0,87	0,92	0,96	0,99	1,01
0,90	0,855	2,10	-	-	-	-	0,15	0,21	0,25	0,28
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,	1,95	-	-	-	-	0,22	0,27	0,32	0,35
		1,89	-	-	-	0,22	0,30	0,36	0,40	0,44
		1,65	-	_	-	0,33	0,41	0,47	0,51	0,55
		1,50	-	_	0,36	0,49	0,57	0,63	0,68	0,72
		1,35	-	-	0,59	0,72	0,81	0,88	0,92	0,96
		1,20	_	0,77	1,02	1,17	1,28	1,36	1,42	1,46
1,20	1,155	2,40	_	_	-	_	0,13	0,22	0,29	0,34
1,20	1,133	2,10	_	_	_	0,19	0,32	0,41	0,48	0,53
		1,80	_	_	0,32	0,53	0,66	0,76	0,83	0,89

ПРИЛОЖЕНИЕ 3

ОПРЕДЕЛЕНИЕ ВЫЛЕТОВ НИЖНЕЙ СТУПЕНИ ФУНДАМЕНТА

					<i>kh</i> ₀₁			
g' (/ ²)	9	ξ, -δ			$\delta - \delta_r < 2h_{2r}$			
	12,5	15	20	12,5	15	20		
1	2	3	4	5	6	7		
0,15 (1,5) 0,2 (2) 0,25 (2,5) 0,3 (3) 0,35 (3,5)	3 3 3 3 2,8 3	3 3 3 3	3 3 3 3	$ \begin{array}{c} 3 \\ 3 \\ 3 \\ 3 \\ 2,7 \\ \hline 2,9 \end{array} $	3 3 3 3 3	3 3 3 3 3		
0,4 (4)	$\frac{2,6}{2,7}$	$\frac{2,9}{3}$	3	$\frac{2,5}{2,7}$	$\frac{2,8}{3}$	3		
0,45 (4,5)	$\frac{2,4}{2,5}$	$\frac{2,7}{2,8}$	3	$\frac{2,3}{2,5}$	$\frac{2,6}{2,7}$	3		
0,5 (5)	$\frac{2,3}{2,4}$	$\frac{2,5}{2,7}$	3	$\frac{2,2}{2,3}$	$\frac{2,4}{2,6}$	3		
0,55 (5,5)	$\frac{2,2}{2,3}$	$\frac{2,4}{2,5}$	$\frac{2,8}{3}$	$\frac{2,1}{2,2}$	$\frac{2,3}{2,4}$	$\frac{2,7}{2,9}$		
0,6 (6)	$\frac{2,1}{2,2}$	$\frac{2,3}{2,4}$	$\frac{2,7}{2,8}$	$\frac{2}{2,1}$	$\frac{2,2}{2,3}$	$\frac{2,6}{2,8}$		

 kh_{01} k 6-6, =2hos 6-6, >2hot 12,5 20 12,5 15 20 15 9 10 8 11 12 13 0,15 (1,5) 3 3 3 3 3 3 0,2 (2) 2,9 3 3 3 3 3 3 0,25 (2,5) 2,5 2,8 3 3 3 3 2,6 3 0,3 (3) 2,7 2,3 2,5 3 3 3 2,4 2,8 2,6 0,35 (3,5) 2,9 2,3 2,7 2,4 2,1 3 2,7 2,2 2,4 2,9 2,6 0,4 (4) 2,3 2,5 2,5 2,1 3 2 2,6 2,7 2,2 2,4 0,45 (4,5)

2.03.01-84,	2.02.01-83	. 66	71
-------------	------------	------	----

	$\frac{2,1}{2,2}$	$\frac{2,3}{2,5}$	$\frac{2,8}{3}$	1,9	$\frac{2}{2,1}$	$\frac{2,3}{2,5}$	
0,5 (5)	$\frac{2}{2,1}$	$\frac{2,2}{2,3}$	$\frac{2,6}{2,8}$	1,8	1,9	$\frac{2,2}{2,3}$	
0,55 (5,5)	1,9	$\frac{2,1}{2,2}$	$\frac{2,5}{2,6}$	1,7	1,8 1,9	$\frac{2,1}{2,2}$	
0,6 (6)	1,8 1,9	$\frac{2}{2,1}$	$\frac{2,3}{2,5}$	$\frac{1,6}{1,7}$	1,7 1,8	$\frac{2}{2,1}$	

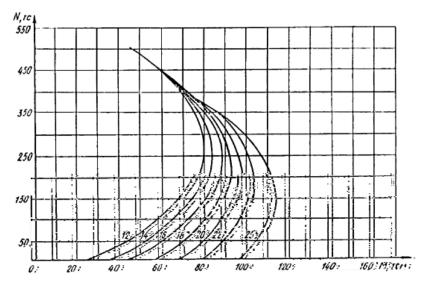
: 1.

 $\gamma_{mb1}=1,1.$

2.

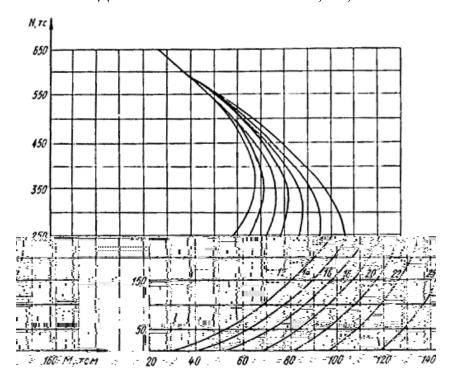
2.03.01-84, 2.02.01-83 . 67 71

ПРИЛОЖЕНИЕ 4 ВСПОМОГАТЕЛЬНЫЕ ФОРМУЛЫ ДЛЯ РАСЧЕТА ПРОЧНОСТИ БЕТОННЫХ ПОДКОЛОННИКОВ


			A_b	$e_x = M_x / + l_{cf} / 30$	$e_y = M_y / N + b_{cf} / 30$
1	Popular Report of the	$x = l_{cf} - 2e_x$	$b_{c\!f}^{ m x}$	$\leq 0,45 l_{cf}$	0
2	Sylvan Ca	$\begin{split} x &= -0.75(b_{cf}/m - l_{cf}) \pm \\ &\pm \sqrt{0.56(b_{cf}/m - l_{cf})^2 + } \\ &+ \left[2(b_{cf}l_{cf} - N/R_b) \right]/m \\ y &= 1.5(b_{cf} - ml_{cf}) + mx; \\ m &= e_y/e_x; \\ c_x &= xy(0.5l_{cf} - 0.333y)/ \\ /(2b_{cf}l_{cf} - xy) &\geq e_{xi}; \\ c &= xy(0.5b_{cf} - 0.333y)/ \\ /(2b_{cf}l_{cf} - xy) \geq e_y \end{split}$	$b_{ef}l_{ef}^{-}$ $0,5xy$	≤ <i>l_{cf}</i> /6	≤b _{cf} /6
3	Sy A Res	$x_1 = (l_{cf} - 2e_x)/(e_y/6 + +b_{cf}/12e_y);$ $x_2 = 0.5x_1(b_{cf}/6e_y - 1)$	$b_{cf} = (0.5x_1 + x_2)$	$\leq 0,45l_{cf}$	≤ <i>b_{cf}</i> /6
4	SA PER SA X	$x = 3(0.5l_{cf} - e_x);$ $y = 3(0.5b_{cf} - e_y)$	0,5 <i>xy</i>	$\leq 0.45 \; l_{cf};$ $> l_{cf}/6$	$\leq 0.45 \ b_{cf};$ $> b_{cf}/6$

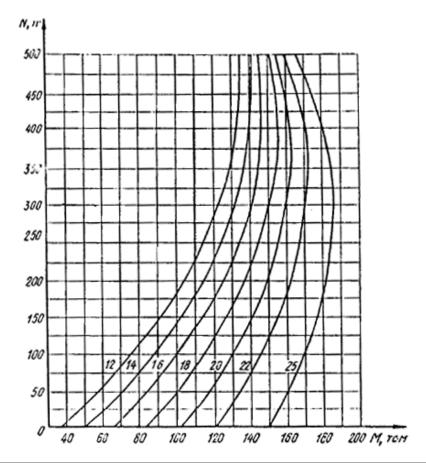
2.03.01-84, 2.02.01-83 . 68 71

приложение 5


ГРАФИКИ ДЛЯ ОПРЕДЕЛЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ ЖЕЛЕЗОБЕТОННЫХ ПОДКОЛОННИКОВ ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ

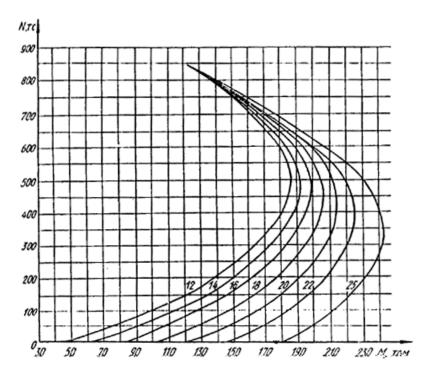
ПОДКОЛОННИК СЕЧЕНИЕМ 0,9×0,9 М

N,	M_x / M_y										
11,	0,151	0,325	0,509	0,726	1,0	1,376	1,963	3,078	6,61		
50	1,0	1,0	0,98	0,98	0,96	0,96	0,97	0,99	1,0		
100	1,0	1,0	0,97	0,96	0,94	0,95	0,97	0,99	1,0		
150	1,0	0,99	0,96	0,94	0,93	0,94	0,96	0,98	1,0		
200	1,0	0,98	0,95	0,93	0,92	0,93	0,95	0,98	1,0		
250	1,0	0,98	0,94	0,92	0,91	0,92	0,95	0,98	1,0		
300	1,0	0,98	0,95	0,95	0,94	0,94	0,96	0,98	1,0		
350	1,0	1,0	0,97	0,97	0,97	0,96	0,97	0,98	1,0		
400	1,0	1,01	1,02	1,01	0,99	1,02	1,0	1,0	1,0		
450	1,0	1,02	1,04	1,05	1,03	1,04	1,02	1,02	1,0		
500	1,0	1,02	1,05	1,06	1,05	1,06	1,03	1,02	1,0		

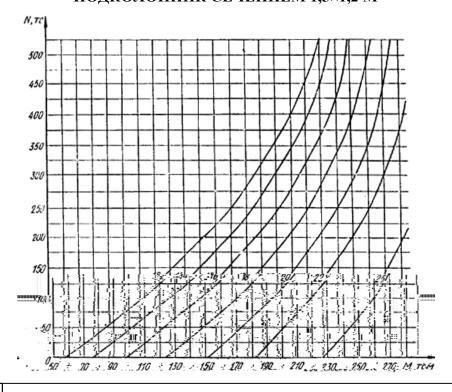

ПОДКОЛОННИК СЕЧЕНИЕМ 1,2×0,9 М

2.03.01-84, 2.02.01-83 . 69 71

N,	M_x / M_y									
,	0,151	0,325	0,509	0,726	1,0	1,376	1,963	3,078	6,61	
50	1,0	1,01	1,03	1,05	1,10	1,17	1,20	1,26	1,29	
100	1,0	1,01	1,02	1,04	1,07	1,13	1,17	1,24	1,28	
150	1,0	1,0	1,01	1,03	1,05	1,10	1,15	1,21	1,28	
200, 250	1,0	1,0	1,0	1,01	1,03	1,08	1,14	1,20	1,27	
300, 350	1,0	1,0	0,99	1,0	1,02	1,05	1,12	1,19	1,27	
400, 450	1,0	0,99	1,0	1,01	1,05	1,09	1,15	1,21	1,28	
500	1,0	1,0	1,02	1,04	1,08	1,13	1,18	1,24	1,30	
550	1,0	1,01	1,04	1,08	1,12	1,17	1,23	1,28	1,32	
600	1,0	1,02	1,05	1,08	1,14	1,20	1,25	1,29	1,32	
650, 700	1,0	1,02	1,05	1,11	1,17	1,23	1,27	1,30	1,31	

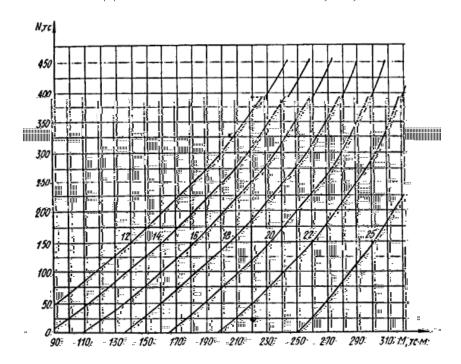

ПОДКОЛОННИК СЕЧЕНИЕМ 1,5×0,9 М

N,	M_x / M_y									
11,	0,151	0,325	0,509	0,726	1,0	1,376	1,963	3,078	6,61	
50	1,0	1,02	1,06	1,13	1,2	1,3	1,4	1,52	1,57	
100	1,0	1,02	1,05	1,10	1,17	1,25	1,36	1,45	1,55	
150	1,0	1,01	1,05	1,09	1,15	1,23	1,33	1,43	1,54	
200	1,0	1,01	1,04	1,08	1,14	1,23	1,31	1,42	1,53	
250	1,0	1,01	1,04	1,07	1,13	1,21	1,31	1,41	1,53	
300	1,0	1,01	1,04	1,07	1,12	1,19	1,29	1,41	1,53	
350	1,0	1,01	1,03	1,06	1,10	1,18	1,28	1,40	1,53	
400	1,0	1,01	1,03	1,06	1,10	1,17	1,27	1,39	1,52	
450	1,0	1,01	1,02	1,06	1,10	1,16	1,26	1,39	1,52	
500	1,0	1,01	1,02	1,05	1,10	1,18	1,28	1,41	1,52	


ПОДКОЛОННИК СЕЧЕНИЕМ 1,2×1,2 М

2.03.01-84, 2.02.01-83 .70 71

N,		M_x/M_y										
1,,	0,151	0,325	0,509	0,726	1,0	1,376	1,963	3,078	6,61			
50	1,0	1,0	1,0	1,02	1,0	1,0	1,0	1,0	1,0			
100, 150	1,0	0,99	0,99	0,97	0,97	0,97	0,98	0,99	1,0			
200, 250	1,0	0,98	0,97	0,95	0,95	0,95	0,96	0,98	1,0			
300, 350	1,0	0,98	0,96	0,93	0,92	0,94	0,95	0,98	1,0			
400, 450	1,0	0,98	0,95	0,93	0,92	0,93	0,95	0,98	1,0			
500, 550	1,0	0,97	0,95	0,93	0,92	0,93	0,95	0,97	1,0			
600, 650	1,0	0,97	0,96	0,95	0,95	0,95	0,96	0,97	1,0			
700, 750	1,0	0,99	0,99	0,98	0,98	0,98	0,98	0,99	1,0			
800	1,0	1,02	1,02	1,03	1,01	1,02	1,01	1,01	1,0			
850	1,0	1,02	1,04	1,04	1,03	1,04	1,03	1,03	1,0			


ПОДКОЛОННИК СЕЧЕНИЕМ 1,5×1,2 М

2.03.01-84, 2.02.01-83 .71 71

N,	M_x / M_y									
11,	0,151	0,325	0,509	0,726	1,0	1,376	1,963	3,078	6,61	
50	1,0	1,02	1,05	1,07	1,12	1,17	1,17	1,2	1,22	
100	1,0	1,01	1,04	1,07	1,09	1,14	1,16	1,19	1,21	
150	1,0	1,01	1,03	1,06	1,08	1,11	1,15	1,19	1,21	
200	1,0	1,01	1,03	1,05	1,07	1,11	1,14	1,18	1,21	
250	1,0	1,01	1,02	1,04	1,06	1,09	1,13	1,18	1,20	
300	1,0	1,0	1,01	1,03	1,05	1,08	1,12	1,17	1,20	
350	1,0	1,0	1,01	1,02	1,04	1,07	1,12	1,16	1,20	
400	1,0	1,0	1,0	1,01	1,03	1,06	1,10	1,16	1,20	
450	1,0	1,0	1,0	1,0	1,02	1,05	1,10	1,15	1,20	
500	1,0	1,0	1,0	1,0	1,02	1,05	1,09	1,15	1,20	

ПОДКОЛОННИК СЕЧЕНИЕМ 1,8×1,2 М

M_x/M_y	M							
.,	0,151	0,325	0,509	0,726	1,0	1,376	1,963	